Do you want to publish a course? Click here

Forecasting Monthly Wind Velocity in Tartous station using Box-Jenkins Methodology

التنبؤ بسرعة الرياح الشهرية في محطة طرطوس باستخدام منهجية بوكس - جنكنز

1681   1   38   0.0 ( 0 )
 Publication date 2018
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The velocity and direction of the wind greatly affect marine navigation and the movement of merchant ships in harbors, It also affects the rapid movement of pollutants into the air from industrial cities to agricultural and residential areas. The importance of the research comes from forecasting monthly wind velocity in the Tartous station and to achieve this goal the data of time series for the monthly wind velocity at Tartous station in Tartous governorate The methodology of "Box – Jenkins" been used in the study, this methodology relies on finding future forecasts from original data series. Also, the applications “MINITAB, EXCEL” have been used to obtain the results of the study. As a result, the study found that wind velocity value in the ' Tartous station' decreasing, this decline amounted to 0.002 km/h per month during the monitoring period. Also, the appropriate (SARIMA) model for the series was build after it passed the various statistical tests are required, and founded that SARIMA(1,0,0)(1,1,1)12 model is a good representation of the data and the SARIMA(1,0,1)(1,1,0)12 model is the right model to forecast future monthly wind.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة التنبؤ بسرعة الرياح الشهرية في محطة طرطوس باستخدام منهجية بوكس - جنكنز. تعتمد هذه المنهجية على تحليل السلاسل الزمنية لإيجاد تنبؤات مستقبلية بناءً على البيانات الأصلية. تم استخدام بيانات سرعة الرياح الشهرية من عام 1998 إلى 2003 لبناء نموذج SARIMA المناسب. أظهرت النتائج أن سرعة الرياح في محطة طرطوس تتناقص بمعدل 0.002 كم/سا شهريًا خلال فترة الرصد. تم بناء نموذج SARIMA(1,0,0)(1,1,1)12 لتمثيل البيانات، ونموذج SARIMA(1,0,1)(1,1,0)12 للتنبؤ بالقيم المستقبلية. أظهرت الدراسة أن استخدام معيار أكاكي كان فعالًا في اختيار النموذج الأمثل. توصي الدراسة ببناء نموذج للتنبؤ بسرعة الرياح اليومية باستخدام الشبكات العصبية الصنعية ومقارنة النتائج مع نموذج بوكس - جنكنز.
Critical review
دراسة نقدية: تُعد هذه الدراسة خطوة مهمة في مجال التنبؤ بسرعة الرياح، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، الاعتماد على بيانات من فترة زمنية محدودة (1998-2003) قد لا يكون كافيًا للحصول على تنبؤات دقيقة على المدى الطويل. كان من الأفضل استخدام بيانات من فترة زمنية أطول. ثانيًا، لم يتم التطرق إلى تأثير العوامل المناخية الأخرى التي قد تؤثر على سرعة الرياح مثل التغيرات المناخية العالمية. أخيرًا، على الرغم من أن الدراسة توصي باستخدام الشبكات العصبية الصنعية، إلا أنها لم تقدم مقارنة واضحة بين هذه الطريقة ومنهجية بوكس - جنكنز، مما يترك مجالًا للتساؤل حول فعالية كل منهما.
Questions related to the research
  1. ما هي أهمية التنبؤ بسرعة الرياح في محطة طرطوس؟

    تنبؤ سرعة الرياح مهم للملاحة البحرية وحركة السفن التجارية، وكذلك لتقدير سرعة انتقال الملوثات من المدن الصناعية إلى المناطق الزراعية والسكنية.

  2. ما هي الفترة الزمنية التي تم استخدامها لجمع بيانات سرعة الرياح في الدراسة؟

    تم جمع بيانات سرعة الرياح الشهرية من عام 1998 إلى 2003.

  3. ما هو النموذج الذي تم اختياره لتمثيل بيانات سرعة الرياح الشهرية في محطة طرطوس؟

    تم اختيار نموذج SARIMA(1,0,0)(1,1,1)12 لتمثيل بيانات سرعة الرياح الشهرية.

  4. ما هي التوصيات التي قدمتها الدراسة لتحسين التنبؤ بسرعة الرياح؟

    توصي الدراسة ببناء نموذج للتنبؤ بسرعة الرياح اليومية باستخدام الشبكات العصبية الصنعية (ANN) ومقارنة النتائج مع نموذج بوكس - جنكنز.


References used
KAVASSERI، R. G.;SEETHARAMAN، K. Day-ahead Wind Speed Forecasting Using F-ARIMA Models. North Dakota State University ، 2009
WANG، H.; YAN، J.; LIU، Y.; HAN، SH.; ZHAO، J. Multi-Step-Ahead Method For Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data. 2017
FALK، M.; MAROHN، F.; MICHEL، R.; HOFMANN، D.; MACKE، M. A First Course on Time Series Analysis. Chair of Statistics، University of Wurzburg، 2006. 58-76
rate research

Read More

The objective of this research is to analyze the time series of labor productivity in the Commercial Bank of Syria for a period of ninety days. The pattern of change in productivity is identified in order to construct a model that helps predict the values of productivity. So we used Box Jenkins models in this study by using statistical methods Such as the ADF, PP KPSS and Q stat tests to detect that the series is Non stationary, but when the first difference was taken, the series becomes stationary, and confirmed by the same previous tests. A series of time series models were then filtered based on Autocorrelation (ACF) and Partial Autocorrelation(PACF). After selecting between several candidate models, by applying some statistical methods such as MSE and BIC, we selected the best time series model ARIMA (1,1,1). The significance of its coefficients was determined using t
Rainfall is considered as one of the most difficult and complex elements of the hydrological cycle, to understand and model, due to the complexity of air operations that generate rain. The importance of research comes from the direct relationship b etween the rainfall amount and economic & social activities of the population, planning scopes of the water resources management, particularly with respect to the agricultural development. The research aims to highlight the rainfall amounts in Tartous station which is located in the southern part of the Syrian coast, and applying one model of Box-Jenkins models for the purpose of predicting future rainfall amounts. Multiple Arima models have been tested. The results showed that the model SARIMA (3,0,4) was the best one. Data were divided into 43 years to build the model and eight years to test it. The test results gave high accuracy in the performance, and the model was used to predict the values of annual rainfall for the next twenty years.
A reliable and continuous supply of electrical energy is necessary for the functioning of today’s complex society. Because of the increasing consumption and the extension of existing electrical transmission networks and these power systems are oper ated closer and closer to their limits accordingly the possibilities of overloading, equipment failures and blackout are also increasing, furthermore, we have an additional obstacle which is that electrical energy cannot be stored efficiently, so, electrical energy should be generated only when it's needed. Due to the fact that world is facing a lack of oil reserves and the difficulties related to have alternative sources to generate electrical power, then, electrical load forecasting is considered as a crucial factor in electrical power system either from economical or technical point of view on both planning and operating levels. This research introduces a short term electrical load forecasting system by using artificial neural networks with a simulation in Matlab environment in addition to an interface for the system and all that is depending on previous load data and weather parameters in Tartous province.
Due to the importance of water, and the increasing of demand at the present time due to the tremendous development in all spheres of economic and social life, and as the evaluation, planning and management of water sources, one of the important top ics in human life, especially in areas with scarce rainfall or where rainfall distribution is poor or irregular so cannot be used for different purposes. From here, the importance of the research in forecasting rainfall in the Husn Suleiman station, comes, and to achieve this goal the data of time series for the average annual rainfall precipitation been used in Husn Suleiman station which located in the province of Tartous on longitude 36 ° 15 ' andlatitude 34 ° 56', for the period between 1959-2011, The methodology of "Box – Jenkins" been used in the study, this methodology relies on finding future forecasts from original data series. Also,the applications “MINITAB, EXCEL” have been used in the statistical side and the preparation of the study results. As a result, the study found that rainfall value in the 'Husn Suleiman station' decreasing, this decline amounted to 3.7 mm per year during the monitoring period. Also, the appropriate (ARIMA) model for the series was build after it passed the various statistical tests are required, and founded that ARIMA(1,0,0) model is a good representation of the data and the ARIMA(4,1,5) model is the right model to forecast future rainfall.
Weather forecasting (especially rainfall) is one of the most important and challenging operational tasks carried out by meteorological services all over the world. Itis furthermore a complicated procedure that requires multiple specialized fields o f expertise. In this paper, a model based on artificial neural networks (ANNs) and wavelet Transform is proposed as tool to predict consecutive monthly rainfalls (1933-2009) taken of Homs Meteorological Station on accounts of the preceding events of rainfall data. The feed-forward neural network with back-propagation Algorithm is used in the learning and forecasting, where the time series of rain that detailed transactions and the approximate three levels of analysis using a Discrete wavelet transform (DWT). The study found that the neural network WNN structured )5-8-8-8-1(, able to predict the monthly rainfall in Homs station on the long-term correlation of determination and root mean squared-errors (0.98, 7.74mm), respectively. Wavelet Transform technique provides a useful feature based on the analysis of the data, which improves the performance of the model and applied this technique in ANNmodels for rain because it is simple, as this technique can be applied to other models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا