Do you want to publish a course? Click here

Predict monthly rainfall in Homs Station using a technique Wavelet Transform with Artificial Neural Network

التنّبؤ بالأمطار الشّهرية في محطة حمص باستخدام تقنية تحويل المويجات و الشّبكات العصبية الاصطناعية

2035   1   241   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Weather forecasting (especially rainfall) is one of the most important and challenging operational tasks carried out by meteorological services all over the world. Itis furthermore a complicated procedure that requires multiple specialized fields of expertise. In this paper, a model based on artificial neural networks (ANNs) and wavelet Transform is proposed as tool to predict consecutive monthly rainfalls (1933-2009) taken of Homs Meteorological Station on accounts of the preceding events of rainfall data. The feed-forward neural network with back-propagation Algorithm is used in the learning and forecasting, where the time series of rain that detailed transactions and the approximate three levels of analysis using a Discrete wavelet transform (DWT). The study found that the neural network WNN structured )5-8-8-8-1(, able to predict the monthly rainfall in Homs station on the long-term correlation of determination and root mean squared-errors (0.98, 7.74mm), respectively. Wavelet Transform technique provides a useful feature based on the analysis of the data, which improves the performance of the model and applied this technique in ANNmodels for rain because it is simple, as this technique can be applied to other models.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة التنبؤ بالأمطار الشهرية في محطة حمص باستخدام تقنية تحويل المويجات والشبكات العصبية الاصطناعية. تعتبر التنبؤات الجوية، وخاصة الأمطار، من المهام المعقدة والتي تتطلب خبرات متعددة. اقترح الباحثون نموذجًا يعتمد على الشبكات العصبية الاصطناعية مع تحويل المويجات كأداة للتنبؤ بالأمطار الشهرية بناءً على بيانات سابقة لهطول الأمطار من 1933 إلى 2009. تم تحليل السلسلة الزمنية للأمطار إلى معاملات تفصيلية وتقريبية على ثلاث مستويات باستخدام تحويل المويجات المتقطع، واستخدمت الشبكة العصبية أمامية التغذية مع خوارزمية الانتشار العكسي في عملية التعلم والتنبؤ. توصلت الدراسة إلى أن الشبكة العصبية WNN ذات الهيكلية (1–8–8–8–8) قادرة على التنبؤ بالأمطار الشهرية في محطة حمص على المدى الطويل بدقة عالية. تقدم تقنية تحويل المويجات ميزة مفيدة في تحليل البيانات، مما يحسن من أداء النموذج، ويمكن تطبيق هذه التقنية في نماذج الشبكات العصبية الاصطناعية للأمطار لأنها بسيطة ويمكن تطبيقها لنماذج أخرى.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة في مجال التنبؤ بالأمطار باستخدام تقنيات حديثة مثل الشبكات العصبية الاصطناعية وتحويل المويجات. ومع ذلك، يمكن توجيه بعض الانتقادات البناءة لتحسين العمل في المستقبل. أولاً، قد يكون من المفيد تضمين المزيد من المتغيرات الجوية الأخرى في النموذج لتحسين دقة التنبؤات. ثانياً، يمكن أن تكون الدراسة أكثر شمولية إذا تم تطبيق النموذج على محطات أخرى لمقارنة النتائج. ثالثاً، قد يكون من المفيد إجراء تحليل حساسية للنموذج لفهم تأثير كل متغير على النتائج النهائية. وأخيراً، يمكن تحسين العرض البياني للنتائج لتسهيل فهمها من قبل القراء غير المتخصصين.
Questions related to the research
  1. ما هي التقنية المستخدمة في هذه الدراسة للتنبؤ بالأمطار الشهرية؟

    استخدمت الدراسة تقنية تحويل المويجات والشبكات العصبية الاصطناعية للتنبؤ بالأمطار الشهرية.

  2. ما هي الفترة الزمنية التي تم الاعتماد عليها لجمع بيانات الأمطار في هذه الدراسة؟

    تم جمع بيانات الأمطار من محطة حمص للأرصاد الجوية للفترة من 1933 إلى 2009.

  3. ما هو الهيكل النهائي للشبكة العصبية الاصطناعية المستخدمة في الدراسة؟

    الهيكل النهائي للشبكة العصبية الاصطناعية هو (1–8–8–8–8) حيث يتكون من طبقة مدخلات واحدة، وثلاث طبقات خفية تحتوي كل منها على 8 عصبونات، وطبقة مخرجات واحدة.

  4. ما هي الميزة التي تقدمها تقنية تحويل المويجات في تحليل البيانات؟

    تقدم تقنية تحويل المويجات ميزة مفيدة في تحليل البيانات من خلال تقسيمها إلى معاملات تفصيلية وتقريبية، مما يحسن من أداء النموذج.


References used
GWANGSEOB, K; ANA, P. B. Quantitative flood forecasting using multi sensor data and neural networks. Journal of Hydrology, USA, 2001, 45–62
FRENCH, M. N, KRAJEWSKI, W. F; CUYKENDALL, R. R. Rainfall forecasting in space and time using neural network. Journal of Hydrol, Amsterdam, Vol.137, 1992, 1–31
SHRIVASTAVA, G; KARMAKAR, S; KOWAR, M, K; GUHATHAKURTA, P. Application of Artificial Neural Networks in Weather Forecasting. A Comprehensive Literature Review. International Journal of Computer Applications 51(18), 2012, 17-29
rate research

Read More

Rainfall is highly non-linear and complicated phenomena, which require nonlinear mathematical modeling and simulation for accurate prediction. This study comparing the performance of the prediction of one-day-ahead, where Two Feed Forward Neural N etwork FFNN models were developed and implemented to predict the rainfall on daily for three months (December, January, February). These models are Artificial Neural Network traditional (ANN) model and artificial neural network technique combined with wavelet decomposition (Wavelet- Neural) According to two different methods to build a model using two types of wavelets of Daubechies family (db2, db5). In order to compare the performance of the models in their ability to predict the rains on short-term (for one and two and three-days-ahead) the last months of the period of study, used some statistical standards, These parameters include the Root Mean Square Error RMSE, Coefficient Of Correlation (R).
The evaluation of surface water resources is a necessary input to solving water management problems, which includes finding a relationship between precipitation and runoff, and this relationship is a high degree of complexity. The rain of the most important factors that greatly effect on rivers discharge, and process to prediction of these flows must take this factor into account, and much of the attention and study, artificial neural networks and is considered one of the most modern methods in terms of accuracy results in linking these multiple factors and highly complex. In order to predict the runoff contained daily to Lake Dam Tishreen 16 in Latakia, the subject of our research, the application of different models of artificial neural networks (ANN), was the previous input flows and rain. Divided the data set for the period between (2006-2012) into two sets: training and test, has been processing the data before using them as inputs to the neural network using Discrete Wavelet Transform technique, to get rid of the maximum values and the values of zero, where t the analysis of time series at three levels of accuracy before they are used sub- series resulting as inputs to the Feed Forward ANN that depend back-propagation algorithm for training. The results indicated that with the structural neural network (1-2-6) Wavelet-ANN model, are the best in the representation of the characteristics studied and best able to predict runoff daily contained to Lake Dam Tishreen 16 for a day in advance, where he reached the correlation coefficient the root of the mean of squared-errors (R2 = 0.96, RMSE = 1.97m3 / sec), respectively.
Accurate estimating and predicting of hydrological phenomena plays an influential role in the development and management of water resources, preparing of future plans according to different scenarios of climate changes. Evapotranspiration is one of t he major meteorological components of the hydrologic cycle and from the most complex of them, and the accurate prediction of this parameter is very important for many water resources applications. So, this research goals to prediction of monthly reference evapotranspiration (ET0) at Homs meteostation, in the middle of Syrian Arab Republic, using Artificial Neural Networks (ANNs), and Fuzzy Inference System (FIS), depending on available climatic data, and comparision between the results of these models. The used data contained 347 monthly values of Air Temperature (T), Relative Humidity (RH), Wind Speed (WS) and Sunshine Hours (SS) (from October 1974 to December 2004). The monthly reference evapotranspiration data were estimated by the Penman Monteith method, which is the proposed method by Food and Agriculture Organization of the United Nations (FAO) as the standard method for the estimation of ET0, and used as outputs of the models. The results of this study showed that feed forward back propagation Artificial Neural Networks (FFBP-ANNs) pridected successfully the monthly ET0 using climatic data, with low values of root mean square errors (RMSE), and high values of correlation coefficients (R), and showed that the using of the monthly index as an additional input, improves the accurate of prediction of the artificial neural networks models. Also, the results showed good ability of Fuzzy Inference Models (FIS) in predicting of monthly reference evapotranspiration. Sunshine hours are the most influential single parameter for ET0 prediction (R= 97.71%, RMSE = 18.08 mm/month) during the test period, sunshine hours and wind speed are the most influential optimal combination of two parameters (R= 98.55%, RMSE = 12.49 mm/month) during the test period. The results showed high reliability for each of the artificial neural networks and fuzzy inference system with a little preference for artificial neural networks which can add the monthly index in the input layer, and there for improve the presicion of predictions. This study recommends the using of artificial intelligence techniques in modeling of complex and nonlinear phenomena which related of water resources.
Evaporation is a major meteorological component of the hydrologic cycle, and it plays an influential role in the development and management of water resources. The aim of this study is to predict of the monthly pan evaporation in Homs meteostation using Artificial Neural Networks (ANNs), which based on monthly air temperature and relative humidity data only as inputs, and monthly pan evaporation as output of the network. The network was trained and verified using a back-propagation algorithm with different learning methods, number of processing elements in the hidden layer(s), and the number of hidden layers. Results shown good ability of (2-10-1) ANN to predict of monthly pan evaporation with total correlation coefficient equals 96.786 % and root mean square error equals 24.52 mm/month for the total data set. This study recommends using the artificial neural networks approach to identify the most effective parameters to predict evaporation.
The relationship between precipitation and surface runoff is one of the fundamental components of the hydrological cycle of water in nature and is one of the most complex and difficult to understand because of the large number of parameters involv ed in the modeling of physical processes and the breadth of parmetry and temporary change in basin specifications. Multiple rainfall models Modeling the relationship between precipitation and runoff is very important for engineering design and integrated water resources management, as well as flood forecasting and risk prevention.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا