Do you want to publish a course? Click here

The compression data problem is one of most important problems nowadays, because it saves storage requirements, and reduces the time for the processing, The compressed data give the returns of main data in few times. In this article, we offer an al gorithm for recognizing the closed and unclosed shapes, and that was done by compressing the images using haar wavelet, and we noted that the compressed images give the wanted returns in about quarter the time that main images take. This algorithm was done using the Mathematica 8.0 program as one of the most powerful programming languages.
Weather forecasting (especially rainfall) is one of the most important and challenging operational tasks carried out by meteorological services all over the world. Itis furthermore a complicated procedure that requires multiple specialized fields o f expertise. In this paper, a model based on artificial neural networks (ANNs) and wavelet Transform is proposed as tool to predict consecutive monthly rainfalls (1933-2009) taken of Homs Meteorological Station on accounts of the preceding events of rainfall data. The feed-forward neural network with back-propagation Algorithm is used in the learning and forecasting, where the time series of rain that detailed transactions and the approximate three levels of analysis using a Discrete wavelet transform (DWT). The study found that the neural network WNN structured )5-8-8-8-1(, able to predict the monthly rainfall in Homs station on the long-term correlation of determination and root mean squared-errors (0.98, 7.74mm), respectively. Wavelet Transform technique provides a useful feature based on the analysis of the data, which improves the performance of the model and applied this technique in ANNmodels for rain because it is simple, as this technique can be applied to other models.
The evaluation of surface water resources is a necessary input to solving water management problems, which includes finding a relationship between precipitation and runoff, and this relationship is a high degree of complexity. The rain of the most important factors that greatly effect on rivers discharge, and process to prediction of these flows must take this factor into account, and much of the attention and study, artificial neural networks and is considered one of the most modern methods in terms of accuracy results in linking these multiple factors and highly complex. In order to predict the runoff contained daily to Lake Dam Tishreen 16 in Latakia, the subject of our research, the application of different models of artificial neural networks (ANN), was the previous input flows and rain. Divided the data set for the period between (2006-2012) into two sets: training and test, has been processing the data before using them as inputs to the neural network using Discrete Wavelet Transform technique, to get rid of the maximum values and the values of zero, where t the analysis of time series at three levels of accuracy before they are used sub- series resulting as inputs to the Feed Forward ANN that depend back-propagation algorithm for training. The results indicated that with the structural neural network (1-2-6) Wavelet-ANN model, are the best in the representation of the characteristics studied and best able to predict runoff daily contained to Lake Dam Tishreen 16 for a day in advance, where he reached the correlation coefficient the root of the mean of squared-errors (R2 = 0.96, RMSE = 1.97m3 / sec), respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا