Do you want to publish a course? Click here

Autonomy in Distance English Language Learning

التعلم الذاتي في مجال تعلم اللغة الانجليزية عن بعد

1555   0   9   0 ( 0 )
 Publication date 2009
  fields English
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Open and distance learning is experiencing a rapid growth throughout the world and Syria is no exception. With the turn of the new millennium, Syria launched two state institutes for distance learning: The Open Learning Centre (opened in 2001) and the Syrian Virtual University (opened in 2002). The Syrian Virtual University (SVU), one of its kind in the whole Arab region, offers students the opportunity to gain education through an online learning environment based on the latest technology. Since Syria is a country where English has become an important educational requirement, the teaching of English as a foreign language has therefore entered the arena of distance learning.


Artificial intelligence review:
Research summary
تستعرض هذه الدراسة التي أجرتها الدكتورة هالة دلباني نمو التعلم عن بعد في سوريا، مع التركيز على الجامعة الافتراضية السورية (SVU) ودورها في تعليم اللغة الإنجليزية كلغة أجنبية. تهدف الدراسة إلى تقييم مدى استعداد طلاب اللغة الإنجليزية في SVU لتبني نهج تعلم ذاتي. تم استخدام أساليب كمية ونوعية لجمع البيانات وتحليلها، وكشفت النتائج أن الطلاب على دراية ببعض الصفات المطلوبة للمتعلمين الجيدين عن بعد، لكنهم يفتقرون إلى التوجيه الكافي لتعلم استراتيجيات تعزز الاستقلالية. كما أشارت النتائج إلى أن SVU تقدم أشكالًا متنوعة من الدعم، ولكن مع زيادة عدد الطلاب، يعاني نظام الدعم مما يؤثر على جودة التعلم. تدعو الدراسة إلى تحسين البنية التحتية التكنولوجية والتربوية لتعزيز التعلم الذاتي بين الطلاب.
Critical review
دراسة نقدية: تقدم هذه الدراسة نظرة شاملة ومفصلة حول التحديات والفرص التي تواجه طلاب اللغة الإنجليزية في الجامعة الافتراضية السورية. ومع ذلك، يمكن القول أن الدراسة قد ركزت بشكل كبير على الجوانب التكنولوجية والإدارية دون تقديم حلول عملية كافية لتحسين الاستقلالية لدى الطلاب. كما أن الاعتماد الكبير على الاستبيانات قد يحد من عمق الفهم الحقيقي لتجارب الطلاب. كان من الممكن أن تكون المقابلات الشخصية أو مجموعات التركيز أدوات إضافية مفيدة لجمع بيانات أكثر تفصيلاً.
Questions related to the research
  1. ما هي الأهداف الرئيسية لهذه الدراسة؟

    تهدف الدراسة إلى تقييم مدى استعداد طلاب اللغة الإنجليزية في الجامعة الافتراضية السورية لتبني نهج تعلم ذاتي، وتحليل نظام الدعم المقدم لهم وتأثيره على فعالية التعلم.

  2. ما هي الأساليب التي استخدمتها الدراسة لجمع البيانات؟

    استخدمت الدراسة أساليب كمية ونوعية لجمع البيانات، بما في ذلك الاستبيانات التي تم توزيعها على 317 طالبًا في الجامعة الافتراضية السورية.

  3. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    كشفت النتائج أن الطلاب على دراية ببعض الصفات المطلوبة للمتعلمين الجيدين عن بعد، لكنهم يفتقرون إلى التوجيه الكافي لتعلم استراتيجيات تعزز الاستقلالية. كما أن نظام الدعم يعاني من ضغوط بسبب زيادة عدد الطلاب.

  4. ما هي التوصيات التي قدمتها الدراسة لتحسين التعلم الذاتي في الجامعة الافتراضية السورية؟

    أوصت الدراسة بتحسين البنية التحتية التكنولوجية والتربوية، وزيادة الوعي بين الطلاب والمعلمين حول أهمية الاستقلالية في التعلم، وتعزيز استراتيجيات التعلم الذاتي.


References used
Barnett L., (1993). ‘Teacher off: computer technology, guidance and self-access.’ System, 21 (3). 295-304
Benson, P. (2001). Teaching and researching autonomy in language learning. Harlow, Pearson Education Limited
Benson, P. (2002). Learner autonomy 7: challenges to research and practice. Dublin, Authentik
rate research

Read More

This research seeks to extend our current knowledge in the area of distanct English language learning by exploring the language learning strategies used by students at the Syrian Virtual University (SVU).
Due to complex cognitive and inferential efforts involved in the manual generation of one caption per image/video input, the human annotation resources are very limited for captioning tasks. We define language resource efficient as reaching the same performance with fewer annotated captions per input. We first study the performance degradation of caption models in different language resource settings. Our analysis of caption models with SC loss shows that the performance degradation is caused by the increasingly noisy estimation of reward and baseline with fewer language resources. To mitigate this issue, we propose to reduce the variance of noise in the baseline by generalizing the single pairwise comparison in SC loss and using multiple generalized pairwise comparisons. The generalized pairwise comparison (GPC) measures the difference between the evaluation scores of two captions with respect to an input. Empirically, we show that the model trained with the proposed GPC loss is efficient on language resource and achieves similar performance with the state-of-the-art models on MSCOCO by using only half of the language resources. Furthermore, our model significantly outperforms the state-of-the-art models on a video caption dataset that has only one labeled caption per input in the training set.
Worldwide, Information and communication technologies (ICTs) have gained a vital importance in satisfying the requirements of both the new Education System and the revised Curriculum for English Language Teaching (ELT). The experience of introduci ng different ICTs into the classroom and other educational settings worldwide suggests that teachers' effective integration of technology into their curricula largely depends on their perceptions and attitudes to the value of these tools to achieving their instructional purposes. This research seeks to evaluate the readiness to integrate ICTs into the current teaching practices of the faculty at the department of English Language and Literature at Damascus University. In a context of large classes where resources are minimal and staff members are in short supply, using technology assisted learning at Damascus University may help enhance education by giving learners more flexibility and helping them evolve into more autonomous learners. Investigating the current faculty’s reading of the value of technology as a means of overcoming some of the restrictions imposed by their context will uncover potential limitations on the use of ICTs in the existing context and suggest workable solutions.
The present study focuses on investigating the problems and difficulties facing EFL learners regarding English collocations. It reports the various factors influencing the process of reception and production of English collocations. To achieve the purposes of the study, two tests were given to 25 students majoring in English Language and Literature at the Department of English at Al-Baath University: a gap-filling productive test and a multiple-choice receptive test. There was also a translation productive test (from Arabic into English), and it was given to 25 students majoring in translation in the open learning program at the same department. The three tests were analyzed and then results and findings were presented. The results showed that the participants had poor collocational knowledge and their reception and production of collocations was unsatisfactory, but they performed better in the receptive test. The study also concluded that they sometimes resorted to their first language or to paraphrasing the collocational expression. They made other types of error like general errors (completely irrelevant answers) and leaving blank answers. Moreover, it was found that the students majoring in translation performed slightly better than the students majoring in English Language and Literature. Finally, the study concluded with implications for pedagogy.
We analyse how a transformer-based language model learns the rules of chess from text data of recorded games. We show how it is possible to investigate how the model capacity and the available number of training data influence the learning success of a language model with the help of chess-specific metrics. With these metrics, we show that more games used for training in the studied range offers significantly better results for the same training time. However, model size does not show such a clear influence. It is also interesting to observe that the usual evaluation metrics for language models, predictive accuracy and perplexity, give no indication of this here. Further examination of trained models reveals how they store information about board state in the activations of neuron groups, and how the overall sequence of previous moves influences the newly-generated moves.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا