Do you want to publish a course? Click here

The Role of Illustration in Establishing the Grammatical Rule

دور الشاهد في بناء القاعدة النحوية

1719   0   114   0 ( 0 )
 Publication date 2015
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Grammatical rules are deduced from Arabic spoken by ideally intuitive Arabic speakers, and illustration is the spirit of the rule, endowing it with life, pleasure, and originality. The Arabic used in illustration is that of the holy Quran, sayings of the Prophet as well as renowned poetic and prosaic statements by Arabs from the Jahileah period up to 150 Hizra,i.e, the end of the period of providing arguments. The term illustration is an original Arabic term that came out of Arab concern over mistakes in Arabic. The holy Quran is the source of illustrations, as it is the pillar upon which all other illustrations depend. This paper tries to study the relationship between the grammatical rule and illustrations as well as to demonstrate the motives for illustration, its mechanism, principles, and sources. It also tries to address some equivalents such as provision of argument and evidence as well as analogy.


Artificial intelligence review:
Research summary
يتناول البحث دور الشاهد في بناء القاعدة النحوية في اللغة العربية، حيث يعتبر الشاهد جزءًا أساسيًا في إثبات صحة القواعد النحوية. يستعرض البحث مصادر الشواهد التي تشمل القرآن الكريم، الحديث النبوي الشريف، وكلام العرب شعراً ونثراً. يوضح البحث أن القرآن الكريم هو المصدر الأول والأكثر موثوقية للشواهد، يليه الحديث النبوي الشريف، ثم كلام العرب. كما يناقش البحث مصطلحات متعلقة بالاستشهاد مثل الاحتجاج والاستدلال والتمثيل، ويبين الفروق بينها. يعتمد البحث على المنهج الوصفي التحليلي لدراسة الظاهرة اللغوية وتحليلها بدقة. يهدف البحث إلى إبراز أهمية الشاهد في بناء القاعدة النحوية وتوضيح طرق الاستشهاد وكيفيته، بالإضافة إلى توضيح الفروق بين مصطلحات الاستشهاد المختلفة.
Critical review
دراسة نقدية: على الرغم من أهمية البحث في توضيح دور الشاهد في بناء القاعدة النحوية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن أن يتناول البحث بشكل أعمق تأثير الشواهد على تطور القواعد النحوية عبر الزمن. ثانياً، لم يتطرق البحث بشكل كافٍ إلى التحديات التي تواجه استخدام الشواهد في العصر الحديث، مثل اختلاف اللهجات وتغير اللغة. ثالثاً، كان من الممكن أن يقدم البحث أمثلة عملية أكثر لتوضيح الفروق بين مصطلحات الاستشهاد والاحتجاج والاستدلال والتمثيل. ومع ذلك، يظل البحث مساهمة قيمة في مجال الدراسات اللغوية والنحوية.
Questions related to the research
  1. ما هي المصادر الرئيسية للشواهد في بناء القاعدة النحوية؟

    المصادر الرئيسية للشواهد هي القرآن الكريم، الحديث النبوي الشريف، وكلام العرب شعراً ونثراً.

  2. ما هو الفرق بين الاستشهاد والاحتجاج في السياق النحوي؟

    الاستشهاد هو ذكر الأدلة النصية المؤكدة للقواعد النحوية، بينما الاحتجاج هو إثبات صحة قاعدة أو استعمال بدليل نقلي يعود إلى من يصح الاحتجاج به.

  3. لماذا يعتبر القرآن الكريم المصدر الأول والأكثر موثوقية للشواهد؟

    لأن القرآن الكريم هو كلام الله تعالى، وهو أفصح كلام وأبلغه، ويعتبر أعلى درجات الفصاحة والبيان.

  4. ما هي التحديات التي تواجه استخدام الشواهد في العصر الحديث؟

    التحديات تشمل اختلاف اللهجات وتغير اللغة، مما يجعل من الصعب الاعتماد على الشواهد القديمة في بعض الأحيان.


References used
البحر المحيط، لأثير الدين أبي حيان محمد بن يوسف النحوي، تح: عادل أحمد عبد الموجود، علي محمد معوض، دار الكتب العلمية، بيروت، د.ت.
rate research

Read More

This paper tries to examine the relationship between analogy and the grammatical rule. Analogy is one of the basic principles and bases of Arabic grammar during times of rule formation and judging it. Linguists were divided in their attitude to ana logy, with some supporting it and others against it. Grammarians were more inclined toward analogy than compilers, because grammarians’ research was based on the existing similarity between words, phrases, and style used in speech reported by tellers of what had been said by the Arabs. They based their rules and origins of analogy on that similarity. Analogists transliterated some foreign terms, Arabized, and derived new words out of them in a manner similar to that done with Arabic terms. However, some grammarians went very far in their excessive use of analogy to the extent that it becomes far removed from linguistic reality to be a form riddle and guessing, leading to reaction against analogy then against grammar. Analogy became an end in itself; it overlooked its original purpose; was then manifested in rule formation of words said spontaneously.
Pre-trained language models perform well on a variety of linguistic tasks that require symbolic reasoning, raising the question of whether such models implicitly represent abstract symbols and rules. We investigate this question using the case study of BERT's performance on English subject--verb agreement. Unlike prior work, we train multiple instances of BERT from scratch, allowing us to perform a series of controlled interventions at pre-training time. We show that BERT often generalizes well to subject--verb pairs that never occurred in training, suggesting a degree of rule-governed behavior. We also find, however, that performance is heavily influenced by word frequency, with experiments showing that both the absolute frequency of a verb form, as well as the frequency relative to the alternate inflection, are causally implicated in the predictions BERT makes at inference time. Closer analysis of these frequency effects reveals that BERT's behavior is consistent with a system that correctly applies the SVA rule in general but struggles to overcome strong training priors and to estimate agreement features (singular vs. plural) on infrequent lexical items.
We perform neural machine translation of sentence fragments in order to create large amounts of training data for English grammatical error correction. Our method aims at simulating mistakes made by second language learners, and produces a wider rang e of non-native style language in comparison to a state-of-the-art baseline model. We carry out quantitative and qualitative evaluation. Our method is shown to outperform the baseline on data with a high proportion of errors.
The government of companies is considered one of modern concepts which appeared in the last decade of twentieth century . Lately, it is interested by many advanced and undeveloped counties as a result of many cases of administrative and financial failure that grate companies in Us and east of Asia have faced . So work should include mechanisms and system which enable to control between bearers of companies shares and its administrative committee besides ensuring the rights of all parties that deal with the company and affected by its activity and practices and this is known ( Government of Companies) .
The understanding of time expressions includes two sub-tasks: recognition and normalization. In recent years, significant progress has been made in the recognition of time expressions while research on normalization has lagged behind. Existing SOTA n ormalization methods highly rely on rules or grammars designed by experts, which limits their performance on emerging corpora, such as social media texts. In this paper, we model time expression normalization as a sequence of operations to construct the normalized temporal value, and we present a novel method called ARTime, which can automatically generate normalization rules from training data without expert interventions. Specifically, ARTime automatically captures possible operation sequences from annotated data and generates normalization rules on time expressions with common surface forms. The experimental results show that ARTime can significantly surpass SOTA methods on the Tweets benchmark, and achieves competitive results with existing expert-engineered rule methods on the TempEval-3 benchmark.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا