Do you want to publish a course? Click here

This work aims at the preparation of stable colloids of inherently conductive polymers, namely polyaniline due to its ease of preparation, high electrical conductivity and the possibilty of reversible doping via acid-base reactions in addition to redox reactions.
Analysis of The results for one of the most important experimental tests on masonry arches strengthened at their extrados or at their intrados by fiber reinforced polymer (FRP)strips;shows that the presence of the fibers prevents the brittle coll apse that occur in plain arch because of formation of four hinges, therefore (depending on position and amount of reinforcement) in strengthened arches, there are three possible mechanisms : 1- masonry crushing , 2- detachment of fibers, and 3- sliding along a mortar joint due to the shear stresses. Some analytical approaches describing these mechanisms are discussed and a comparison between the theoretical values that give and the experimental results was performed to show the agreements , according to analytical study of the experimental results strengthening by fibers enhances the strength and ductility of strengthened arches, the width of strips and the bond between them and masonry are so important to perform optimum strengthening.
This paper makes an experimental and analytical investigation of cracks characteristics in Fiber Reinforced Polymer strengthened RC beams under different levels of sustained load and Reinforced ratio. As the equations available for conventional RC b eams are inappropriate for the calculation of the short-term crack width in FRP-strengthened RC beams[8], a statistical analysis is carried out on available test data from international sources [6-9-10] and from the test results obtained in the current study (Concrete Labor- Civil engineering Department- Damascus University-2014) to establish a new equation that considers the effect of the FRP laminates. This equation is a correlation of stress in steel bars, concrete surface tension , and effective side cover. The long-term crack width is then related to the instantaneous crack width by empirical equations which are derived from the test results obtained in the current study.
It is well known that arch is a main part of the historical structures. Therefore, many techniques are used to strengthen these arches. In this paper, Fiber Reinforced Polymer (FRP) is used to reinforce the arch under vertical loads. Materially Non-L inear Analysis (MNLA) is performed to demonstrate the behavior of the arch with and without the FRP. On the other hand, the effect of FRP lamina thickness and length is undertaken in this research. This paper shows that a small amount of the FRP to some local areas can enhance the ultimate strength of the arch significantly.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا