يتطلب التعرف على الكيان المسمى MultiModal (MNER) سد الفجوة بين فهم اللغة والسياق المرئي.في حين أن العديد من التقنيات العصبية متعددة الوسائط قد تم اقتراح دمج الصور في مهمة MNER، فإن قدرة النموذج على الاستفادة من التفاعلات متعددة الوسائط لا تزال مفهومة سيئة.في هذا العمل، نقوم بإجراء تحليلات متعمقة من تقنيات الانصهار متعددة الوسائط المتعددة من وجهات نظر مختلفة ووصف السيناريوهات حيث لا تؤدي إضافة معلومات من الصورة دائما إلى زيادة الأداء.ندرس أيضا استخدام التسميات التوضيحية كوسيلة لإثراء السياق ل MNER.تعرض التجارب في ثلاث مجموعات من المنصات الاجتماعية الشعبية عنق الزجاجة من النماذج متعددة الوسائط الحالية والحالات التي يستخدمها المساميرات مفيدة.
Multimodal named entity recognition (MNER) requires to bridge the gap between language understanding and visual context. While many multimodal neural techniques have been proposed to incorporate images into the MNER task, the model's ability to leverage multimodal interactions remains poorly understood. In this work, we conduct in-depth analyses of existing multimodal fusion techniques from different perspectives and describe the scenarios where adding information from the image does not always boost performance. We also study the use of captions as a way to enrich the context for MNER. Experiments on three datasets from popular social platforms expose the bottleneck of existing multimodal models and the situations where using captions is beneficial.
References used
https://aclanthology.org/
Multilingual Neural Machine Translation (MNMT) trains a single NMT model that supports translation between multiple languages, rather than training separate models for different languages. Learning a single model can enhance the low-resource translat
Multilingual Neural Machine Translation has achieved remarkable performance by training a single translation model for multiple languages. This paper describes our submission (Team ID: CFILT-IITB) for the MultiIndicMT: An Indic Language Multilingual
In close range photogrammetry, the required geometric data for object documentation can be obtained
from single photo or stereoscopic pairs of photos. But, the documentation of large historic monuments, the
stereo pair is not sufficient. So, we mus
A new face detection system is presented. The system combines several techniques for face detection to achieve better detection rates, a skin colormodel based on RGB color space is built and used to detect skin regions. The detected skin regions are
The amount of digital images that are produced in hospitals is increasing rapidly. Effective
medical images can play an important role in aiding in diagnosis and treatment, they can
also be useful in the education domain for healthcare students by