Do you want to publish a course? Click here

A comparison of Image Enhancement Techniques for Recognizing and Classifying Automatically the Medical Images and implement on MRI brain Image

مقارنة بين تقنيات تحسين الصور للتعرف على الصور الطبية تلقائيًا و تصنيفها و تنفيذها على صورة دماغ التصوير بالرنين المغناطيسي

2719   3   28   0.0 ( 0 )
 Publication date 2018
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The amount of digital images that are produced in hospitals is increasing rapidly. Effective medical images can play an important role in aiding in diagnosis and treatment, they can also be useful in the education domain for healthcare students by explaining with these images will help them in their studies, new trends for image retrieval using automatic image classification has been investigated for the past few years. Medical image Classification can play an important role in diagnostic and teaching purposes in medicine. For these purposes different imaging modalities are used. There are many classifications created for medical images using both grey-scale and color medical images. In this paper, different algorithms in every step involved in medical image processing have been studied. One way is the algorithms of preprocessing step such as Median filter [1], Histogram equalization (HE) [2], Dynamic histogram equalization (DHE), and Contrast Limited Adaptive Histogram Equalization (CLAHE). Second way is the Feature Selection and Extraction step [3,4], such as Gray Level Co-occurrence Matrix(GLCM). Third way is the classification techniques step, which is divided into three ways in this paper, first one is texture classification techniques, second one is neural network classification techniques, and the third one is K-Nearest Neighbor classification techniques. In this paper, we have use MRI brain image to determine the area of tumor in brain. The steps started by preprocessing operation to the image before inputting it to algorithm. The image was converted to gray scale, later on remove film artifact using special algorithm, and then remove the Skull portions from the image without effect on white and gray matter of the brain using another algorithm, After that the image enhanced using optimized median filter algorithm and remove Impurities that produced from first and second steps.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية تقنيات تحسين الصور للتعرف التلقائي على الصور الطبية وتصنيفها، مع تطبيق خاص على صور الدماغ بالرنين المغناطيسي. تتزايد كمية الصور الرقمية المنتجة في المستشفيات بسرعة، ويمكن أن تلعب الصور الطبية دورًا مهمًا في التشخيص والعلاج وكذلك في التعليم الطبي. تمت دراسة عدة خوارزميات في كل خطوة من خطوات معالجة الصور الطبية، بدءًا من مرحلة المعالجة المسبقة باستخدام مرشح الوسيط ومعادلة الرسم البياني الديناميكي، وصولاً إلى تقنيات التصنيف مثل مصفوفة التدرج الرمادي وتقنيات تصنيف الشبكات العصبية وتصنيف ك-أقرب جار. تم استخدام صور الرنين المغناطيسي للدماغ لتحديد منطقة الورم، حيث تم تحويل الصورة إلى تدرج رمادي وإزالة الأجزاء غير الضرورية مثل الجمجمة باستخدام خوارزميات خاصة، ثم تحسين الصورة باستخدام مرشح وسيط معدل لإزالة الشوائب. تمت مقارنة عدة تقنيات تحسين للصور مثل معادلة الرسم البياني الديناميكي ومعادلة الرسم البياني المحدودة التباين، ووجد أن الطريقة الأولى تعطي نتائج أفضل. تم أيضًا تحليل تقنيات استخراج الميزات مثل ميزات اللون والنسيج والشكل، واستخدام مصفوفة توارد التدرج الرمادي لتحليل النسيج. أخيرًا، تم تطبيق تقنيات التصنيف مثل تصنيف النسيج وتصنيف الشبكات العصبية وتصنيف ك-أقرب جار لتحديد مناطق الورم في صور الدماغ بالرنين المغناطيسي.
Critical review
دراسة نقدية: تقدم هذه الورقة البحثية مراجعة شاملة لتقنيات تحسين الصور الطبية وتصنيفها، مع تطبيق عملي على صور الدماغ بالرنين المغناطيسي. ومع ذلك، يمكن توجيه بعض الانتقادات البناءة لتحسين العمل. أولاً، كان من الممكن تقديم مقارنة أكثر تفصيلاً بين أداء الخوارزميات المختلفة المستخدمة في كل خطوة من خطوات المعالجة. ثانيًا، لم يتم التطرق بشكل كافٍ إلى التحديات العملية التي قد تواجه تطبيق هذه التقنيات في بيئات سريرية حقيقية. ثالثًا، كان من الممكن تضمين المزيد من الدراسات التجريبية لتأكيد فعالية الخوارزميات المقترحة. وأخيرًا، يمكن تحسين الورقة بإضافة مناقشة حول التأثيرات المحتملة للاختلافات في جودة الصور المدخلة على أداء الخوارزميات.
Questions related to the research
  1. ما هي الخطوات الأساسية المتبعة في معالجة صور الرنين المغناطيسي للدماغ في هذه الدراسة؟

    تبدأ الخطوات بالمعالجة المسبقة للصورة بتحويلها إلى تدرج رمادي، ثم إزالة الأجزاء غير الضرورية مثل الجمجمة باستخدام خوارزميات خاصة، وتحسين الصورة باستخدام مرشح وسيط معدل لإزالة الشوائب.

  2. ما هي التقنيات المستخدمة لتحسين الصور في هذه الدراسة؟

    تم استخدام تقنيات مثل معادلة الرسم البياني الديناميكي (DHE) ومعادلة الرسم البياني المحدودة التباين (CLAHE) لتحسين الصور.

  3. ما هي أنواع الميزات التي تم استخراجها من الصور الطبية في هذه الدراسة؟

    تم استخراج ميزات اللون والنسيج والشكل، بالإضافة إلى استخدام مصفوفة توارد التدرج الرمادي لتحليل النسيج.

  4. ما هي تقنيات التصنيف التي تم استخدامها لتحديد مناطق الورم في صور الرنين المغناطيسي للدماغ؟

    تم استخدام تقنيات تصنيف النسيج، تصنيف الشبكات العصبية، وتصنيف ك-أقرب جار.


References used
Kesari Vermaa, Bikesh Kumar Singhb, A.S. Thokec, (ICCC 2015)- " An Enhancement in Adaptive Median Filter for Edge Preservation", nternational Conference on Computer, Communication and Convergence
Miss. Sukanya V. Aher1, Mrs. S. S. Vasekar2, April 2016- " A Review: Histogram Equalization Algorithms for Image Enhancement using FPGA", International Journal of Advanced Research in Computer and Communication Engineering Vol. 5,Issue
E. L. Hall, Kruger RP, Dwyer SJ, Hall DL, Mclaren RW, Lodwick GS, 1971- ” A survey of preprocessing and feature extraction techniques for radiographic images. IEEE Transactions on Computers;20:1032–44
rate research

Read More

In this research we introduce a regularization based feature selection algorithm to benefit from sparsity and feature grouping properties and incorporate it into the medical image classification task. Using this group sparsity (GS) method, the wh ole group of features are either selected or removed. The basic idea in GS is to delete features that do not affect the retrieval process, instead of keeping them and giving these features small weights. Therefore, GS improves system by increasing accuracy of the results, plus reducing space and time requirements needed by the system.
Content Based Medical Image Retrieval (CBMIR) systems are a new technique which researchers aim to integrate with Computer Aided Diagnosis systems. These systems usually find and retrieve images from a large image-database which have a similar conten t to a query image. Retrieval is done by extracting the visual features from the query image, formulating them in a features vector, comparing features vector components with those of the images in the database, and then, similarity measures are computed. Based on the similarity measures, images which have a similar content to the query image are retrieved. The introduced analysis study surveys and analyzes the current status of the CBMIR systems, evaluates our findings from this survey, and concludes some specific research directions in this field.
Recently، digital image authentication technologies have gained much attention because of their importance in many multimedia applications. In general digital images are transmitted over unsaved media such as the internet and many types of computer networks. Applications may require a large amount of safety such as military applications and medical applications. Therefore the digital images must be protected against any modifications، which may lead to influence the decisions that associated with them. In this paper، a general scheme based on Steganography & Perceptual Image Hashing techniques was proposed to enhance the security of digital image transmission. In the final test stage, we checked the accuracy of the proposed scheme against potential modifications was studied, by applying different levels of compression and changing the contrast & brightness level of the image. For analyzing the final results, we computed the matching ratio between the original hash vector and the embedded hash vector. As a result، we achieved a near perfect match ratio even after applying the image compression level or changing its brightness level (approximately 99.9%), while the match ratio decreased significantly with the increase of the contrast level of the image (approximately 94%).
Modern web content - news articles, blog posts, educational resources, marketing brochures - is predominantly multimodal. A notable trait is the inclusion of media such as images placed at meaningful locations within a textual narrative. Most often, such images are accompanied by captions - either factual or stylistic (humorous, metaphorical, etc.) - making the narrative more engaging to the reader. While standalone image captioning has been extensively studied, captioning an image based on external knowledge such as its surrounding text remains under-explored. In this paper, we study this new task: given an image and an associated unstructured knowledge snippet, the goal is to generate a contextual caption for the image.
This Paper offers an effective method to measure the length of the femur in Fetal Ultrasound Images, it applies a series of steps starting with the reducing amount of noise in these images, and then converted them to a binary form and uses morphol ogical operations to segment the femur and isolate it from the rest of the image objects, then it applies an Edge Detector in order to find the edges of the bone, then uses the Hough Transform to detect straight lines in the image. we apply overlapping for resulted lines on the original image, finally we choose the most significant and longest straight line which is corresponding to the length of the femur. The proposed method facilitates the measurement of the femur without the help of a physician through a series of steps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا