Do you want to publish a course? Click here

Numerical Simulation of 2D Numerical Wave Tank by the Resolution of Navier-Stokes Equations using Adaptive Selective Mesh Refinement Method

المحاكاة الرقمية لحوض اختبار النماذج عن طريق حل معادلات نافييه ستوكس باستخدام طريقة تنعيم شبكي تلاؤمي انتقائي

908   0   8   0.0 ( 0 )
 Publication date 2018
  fields Marine Engineering
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This paper deals with a numerical method based on the simulation of a 2D tank, for unsteady and laminar two - dimensional incompressible viscous flow. Navier-Stokes and Continuity equations are solved in a fluid domain. These equations are discretized by Finite Differences Method. The pressure is obtained by solving a Poisson equation dealing with a fictitious velocity field. The Poisson equation is solved by a Finite Volume Method. The grid is refined by a new method “Adaptive Selective Mesh Refinement” called “ASMR”.

References used
ANANTHAKRISHNAN, "Nonlinear diffraction of waves over a submerged body in a real fluid". Proc. 8th, Int. Offshore and Polar Ing. Conf., Montreal, 1998, pp288-293
ISSA, H. Y. "Numerical Analyses". Master Lectures, Department of Marine Engineering, Tishreen University, Syria, 2012, pp 63
rate research

Read More

Importance and aims of the research Biomechanics science is interested in studying the dynamic function and the movement of vital tissues depending on their mechanical properties. The main objective of this research is to design a digital model of the human femur using the engineering software specialized in medical image processing and engineering design in order to simulate the mechanical behavior. This would provide important medical information to orthopedic surgeons concerning the paths and the causes of bone fractures and deformities, and open a new perspectives in prosthetics efficiency enhancement. Materials and methods A three dimensional digital model of the femur was produced using the software DeVIDE v 9.8 for medical image processing. A surface triangular mesh was constructed and the mechanical response of the model has been simulated using Ansys 14.5. Results and discussions We have shown the steps necessary to design a computerized model of femur bone on the basis of three-dimensional X-ray images. The results showed the distribution of stresses and displacements of human femur at normal load conditions. Conclusion and recommendations It is recommended to adopt the specialized engineering software for the threedimensional simulation which can be used in different medical applications.
In this paper, spline approximations with five collocation points are used for the numerical simulation of stochastic of differential equations(SDE). First, we have modeled continuous-valued discrete wiener process, and then numerical asymptotic st ochastic stability of spline method is studied when applied to SDEs. The study shows that the method when applied to linear and nonlinear SDEs are stable and convergent. Moreover, the scheme is tested on two linear and nonlinear problems to illustrate the applicability and efficiency of the purposed method. Comparisons of our results with Euler–Maruyama method, Milstein’s method and Runge-Kutta method, it reveals that the our scheme is better than others.
In this paper, spline technique with five collocation parameters for finding the numerical solutions of delay differential equations (DDEs) is introduced. The presented method is based on the approximating the exact solution by C4-Hermite spline i nterpolation and as well as five collocation points at every subinterval of DDE.The study shows that the spline solution of purposed technique is existent and unique and has strongly stable for some collocation parameters. Moreover, this method if applied to test problem will be consistent, p-stable and convergent from order nine .In addition ,it possesses unbounded region of p-stability. Numerical experiments for four examples are given to verify the reliability and efficiency of the purposed technique. Comparisons show that numerical results of our method are more accurate than other methods.
In this paper, we present a numerical algorithm for solving linear integro differential Volterra-Friedholm equations by using spline polynomials of degree ninth with six collocation points. The Fredholm-Volterra equation is converted into a system of first-order linear differential equations, which is solved by applying polynomials and their derivatives with collocation points. The convergence of the proposed method is demonstrated when it is applied to above problem. To test the effectiveness and accuracy of this method, two test problems were resolved where comparisons could be used with other results taken from recent references to the high resolution provided by spline approximations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا