نقدم في هذا البحث خوارزمية عددية لحل معادلات فولتيرا-فريدهولم اللتكاملية-التفاضلية الخطية باستخدام كثيرات حدود شرائحية من الدرجة التاسعة مع ست نقاط تجميع.
يتم تحويل معادلة فولتيرا-فردىولم إلى جملة معادلات تفاضلية خطية من المرتبة الأولى والتي نحليا بتطبيق كثيرات الحدود الشرائحية ومشتقاتها عليها.
تم إثبات تقارب التقنية المقترحة عندما تم تطبيقيا على المسألة المذكورة.
ولاختبار فعالية الطريقة ودقتها تم حل مسألتي اختبار حيث أظهرت مقارنات نتائجنا مع نتائج أخرى مأخوذة من مراجع حديثة إلى الدقة العالية التي قدمتها التقريبات الشرائحية.
In this paper, we present a numerical algorithm for solving linear integro differential Volterra-Friedholm equations by using spline polynomials of degree ninth with six collocation points. The Fredholm-Volterra equation is converted into a system of first-order linear differential equations, which is solved by applying polynomials and their derivatives with collocation points. The convergence of the proposed method is demonstrated when it is applied to above problem. To test the effectiveness and accuracy of this method, two test problems were resolved where comparisons could be used with other results taken from recent references to the high resolution provided by spline approximations.
References used
MUSTAFA M. M. and MUHAMMAD M.A, Numerical Solution of Linear Volterra-Fredholm IntegroDifferential Equations Using Lagrange Polynomials, Mathematical Theory and Modeling,Vol.4, No.9, 2014
K. Maleknejad, B. Basirat, E. Hashemi zadeh.A Bernsteino perational matrix approach for solving a system of high orde rlinear Volterra–Fredholm integro-differential equations, Mathematical and Computer Modelling,Vol.55,pp.1363–1372,2012
YALCßINBAS. S andSEZER.M,The approximate solution of high-order linear Volterra-Fredholm integro-di€ erential equations in terms of Taylor polynomials, Applied Mathematics and Computation Vol.112,pp 291-308,2000
MALEKNEJAD K, Rohaninasab.N, Ezzati,.R, Numerical solution of high-order Volterra–Fredholm integro-differential equations by using Legendre collocation method. Applied Mathematics and Computation,Vol.328, Pp 171-188,2018