Do you want to publish a course? Click here

Real Time Vehicle Detection in Images using HOG Features and SVM

كشف عربة ضمن صور بالزمن الحقيقي باستخدام سمات المخطط النسيجي للتدرّج الموجه HOG و آلة شعاع الدعم

1250   0   27   0 ( 0 )
 Publication date 2018
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The Histogram of Oriented Gradient (HOG) was used to construct the Support Vector Machine (SVM) workbook. This method was applied using C++ programming language and OpenCV and Dlib Libraries.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية منهجية جديدة للتعرف على المركبات في الزمن الحقيقي باستخدام سمات المخطط النسيجي للتدرج الموجه (HOG) وآلة شعاع الدعم (SVM). تم تطبيق هذه المنهجية باستخدام لغة البرمجة ++C ومكتبات OpenCV وDlib. تم توليد مجموعة من الصور المرجعية تشمل أنواع مختلفة من العربات من فيديو مرجعي مصور بكاميرا موضوعة فوق طريق سريع. بعد إجراء مجموعة من الاختبارات، توصل الباحثون إلى منظومة تحديد بلغت نسبة نجاحها 89% وبمعدل يتجاوز 25 صورة بالثانية. تشتمل الورقة على مقدمة حول أهمية التعرّف الآلي على الأغراض، واستعراض للأبحاث والدراسات السابقة، وشرح للأساسيات النظرية لخوارزمية HOG وآلة شعاع الدعم SVM، بالإضافة إلى النتائج التجريبية التي أظهرت نجاح المنهجية في تحقيق نتائج جيدة نسبياً على الرغم من عدم مراعاة بعض التأثيرات أثناء التعليم.
Critical review
تُعد هذه الورقة البحثية خطوة مهمة في مجال التعرف الآلي على المركبات، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، على الرغم من أن النتائج التجريبية أظهرت نسبة نجاح عالية، إلا أن الورقة لم تتناول بشكل كافٍ كيفية التعامل مع التحديات التي قد تواجهها المنهجية في بيئات مختلفة أو مع أنواع أخرى من المركبات. ثانياً، لم يتم التطرق إلى تأثير العوامل البيئية مثل الطقس أو الإضاءة المتغيرة بشكل مفصل. ثالثاً، كان من الممكن تقديم مقارنة أكثر تفصيلاً مع الطرائق الأخرى المستخدمة في نفس المجال لتوضيح مدى تفوق هذه المنهجية بشكل أكبر. وأخيراً، كان من الممكن تحسين الورقة بإضافة المزيد من التفاصيل حول كيفية تحسين الأداء في المستقبل.
Questions related to the research
  1. ما هي نسبة نجاح منظومة التحديد التي تم التوصل إليها في هذه الدراسة؟

    بلغت نسبة نجاح منظومة التحديد 89% وبمعدل يتجاوز 25 صورة بالثانية.

  2. ما هي الأدوات البرمجية المستخدمة في تطبيق المنهجية؟

    تم استخدام لغة البرمجة ++C ومكتبات OpenCV وDlib.

  3. ما هي التحديات التي واجهها الباحثون في هذه الدراسة؟

    من التحديات التي واجهها الباحثون هي البحث عن قاعدة مرجعية مناسبة، واختيار منهجية مناسبة للتعرّف بالزمن الحقيقي، والتعامل مع التغيرات في الأبعاد والدوران واللونية.

  4. ما هي الخطوات الأساسية في خوارزمية HOG المستخدمة في هذه الدراسة؟

    تشتمل خوارزمية HOG على خطوات مثل حساب التدرج الأفقي والشاقولي، حساب الشدة ضمن المحورين، الحصول على التدرج وزاويته، وتطبيق عملية النقييس (الاستظام) على التداخلات أثناء المسح.


References used
Ondrej Miksik and Krystian Mikolajczyk, "Evaluation of local detectors and descriptors for fast feature matching," in Pattern Recognition (ICPR), 21st International Conference on, 2012, pp. 2681-2684
Hua Ji, Yuanhao Wu, Hong-Hai Sun, and Yan-jie Wang, "SIFT feature matching algorithm with global information," Optics and Precision Engineering, vol. 17, no. 2, pp. 439-444, 2009
Patricio Loncomilla, Javier Ruiz del Solar, and Luz MartÃnez, "Object recognition using local invariant features for robotic applications: A survey," Pattern Recognition, vol. 60, no. Supplement C, pp. 499-514, 2016
rate research

Read More

In this paper, we present a new algorithm to automate the detection and extraction of buildings from satellite images, this algorithm is distinguished since it overcomes some obstacles that limit detecting within other methods, such as the differe nce in shape, color, and height of buildings, and it doesn't need multi-spectral images or other complex and high cost images.
This research aims to developing new method for breast tumors extraction and features detection in breast magnetic resonance images by depending on clusteringand image processing algorithms. At the beginning, one of clustering algorithms was used f or image segmentation and grouping pixels by their gray scale values. Then morphological operations were implemented in order to remove noise and undesired regions, after that suspected areas were extracted. Finally some shape features for extracted area were detected, this features could be very useful for tumors diagnosis. A database consisted of 96breast magnetic resonance images were used and proposed approach was appliedby MATLAB program, and we obtainedbreast tumors extraction and its features and compared them with the doctor's opinion .
A mammogram is the best option for early detection of breast cancer, Computer Aided Diagnostic systems(CADs) developed in order to improve the diagnosis of mammograms. This paper presents a proposed method to automatic images segmentation dependin g on the Otsu's method in order to detect microcalcifications and mass lesions in mammogram images. The proposed technique is based on three steps: (a) region of interest (ROI), (b) 2D wavelet transformation, and (c) OTSU thresholding application on ROI. The method tested on standard mini- MIAS database. It implemented within MATLAB software environment. Experimental results and performance evaluate results show that the proposed detection algorithm is a tool to help improve the diagnostic performance, and has the possibility and the ability to detect the breast lesions.
We propose a personalized dialogue scenario generation system which transmits efficient and coherent information with a real-time extractive summarization method optimized by an Ising machine. The summarization problem is formulated as a quadratic un constraint binary optimization (QUBO) problem, which extracts sentences that maximize the sum of the degree of user's interest in the sentences of documents with the discourse structure of each document and the total utterance time as constraints. To evaluate the proposed method, we constructed a news article corpus with annotations of the discourse structure, users' profiles, and interests in sentences and topics. The experimental results confirmed that a Digital Annealer, which is a simulated annealing-based Ising machine, can solve our QUBO model in a practical time without violating the constraints using this dataset.
Services that demanded by users via internet network are classified in two main kinds, Services work in real time such as video and voice in real time and use UDP protocol, and other services that work in non-real time such as web browsing (HTTP) a nd file transfer (FTP) which use TCP Protocol. In this research, we study and analyze algorithms that enhance the quality of service for various applications. For real time application, we use queues disciplines, which gives high priority for these services and achieves minimum delay. For non-real time application, we study congestion control algorithms, which achieve best performance for reliable transfer process with existing the congestion in the network. We used OPNET 14.5 program for simulating various services via internet network. Simulation results show achieving minimum delay for voice service, and achieving high transmission rate for FTP application with existing of packets loss in the network.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا