Do you want to publish a course? Click here

Breast tumors extraction and features detection in breast magnetic resonance images using clustering and image processing algorithms

استخراج الأورام السرطانية و تحديد واصفاتها في صور المرنان المغناطيسي للثدي باستخدام خوارزميات العنقدة و معالجة الصورة

2696   6   101   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This research aims to developing new method for breast tumors extraction and features detection in breast magnetic resonance images by depending on clusteringand image processing algorithms. At the beginning, one of clustering algorithms was used for image segmentation and grouping pixels by their gray scale values. Then morphological operations were implemented in order to remove noise and undesired regions, after that suspected areas were extracted. Finally some shape features for extracted area were detected, this features could be very useful for tumors diagnosis. A database consisted of 96breast magnetic resonance images were used and proposed approach was appliedby MATLAB program, and we obtainedbreast tumors extraction and its features and compared them with the doctor's opinion .


Artificial intelligence review:
Research summary
يهدف البحث إلى تطوير طريقة جديدة لاستخراج وتحديد خصائص وسمات الأورام السرطانية في صور المرنان المغناطيسي للثدي باستخدام خوارزميات العنقدة ومعالجة الصور الرقمية. تبدأ الطريقة باستخدام خوارزمية العنقدة لتجزئة الصورة وتجميع عناصرها وفق قيم السويات الرمادية، ثم تُطبق العمليات المورفولوجية لإزالة الضجيج والمعلومات غير المرغوبة، وأخيراً تُستخلص المنطقة المشبوهة وتُحدد بعض الواصفات الشكلية لها. استخدمت الدراسة قاعدة بيانات مكونة من 96 صورة مرنان مغناطيسي للثدي، وتم تطبيق الطريقة المقترحة باستخدام برنامج الماتلاب. أظهرت النتائج فعالية النظام في استخراج المناطق الورمية وتحديد واصفاتها، وتمت مقارنة النتائج مع آراء الأطباء. أظهرت الدراسة أن النظام قادر على التعامل مع صور المرنان المغناطيسي بمختلف الأحجام والبارامترات دون الحاجة إلى معالجة مسبقة، كما أظهر كفاءة في استخراج الأورام حتى في الصور غير الواضحة والتي تحتوي على نسبة ضجيج عالية. توصي الدراسة بضرورة تطوير النظام ليشمل مراحل التشخيص والتصنيف الآلي بمشاركة فريق من الأطباء المختصين لتحسين دقة النتائج.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم طريقة مبتكرة لاستخراج وتحديد خصائص الأورام السرطانية في صور المرنان المغناطيسي للثدي، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، الاعتماد على قاعدة بيانات محدودة قد يؤثر على تعميم النتائج، لذا يُفضل استخدام قاعدة بيانات أوسع تشمل تنوعاً أكبر في الحالات. ثانياً، لم يتم التطرق بشكل كافٍ إلى كيفية التعامل مع الحالات التي تحتوي على تداخلات معقدة بين الأورام والأنسجة المحيطة، مما قد يؤثر على دقة الاستخراج. ثالثاً، يجب تعزيز التعاون مع الأطباء المختصين في مراحل مبكرة من البحث لضمان توافق النتائج مع التشخيصات الطبية الفعلية. وأخيراً، يمكن تحسين النظام ليشمل تقنيات تعلم الآلة الحديثة مثل الشبكات العصبية العميقة لتحسين دقة الاستخراج والتشخيص.
Questions related to the research
  1. ما هي الطريقة المقترحة لاستخراج الأورام السرطانية في البحث؟

    الطريقة المقترحة تعتمد على خوارزميات العنقدة لتجزئة الصورة ومعالجة الصور الرقمية باستخدام العمليات المورفولوجية لإزالة الضجيج والمعلومات غير المرغوبة، ومن ثم استخراج المنطقة المشبوهة وتحديد واصفاتها الشكلية.

  2. ما هي قاعدة البيانات المستخدمة في البحث؟

    استخدمت الدراسة قاعدة بيانات مكونة من 96 صورة مرنان مغناطيسي للثدي من المعهد العالمي للسرطان في الولايات المتحدة الأمريكية.

  3. ما هي العمليات المورفولوجية المستخدمة في البحث؟

    العمليات المورفولوجية المستخدمة تشمل عمليات الفتح والإغلاق لإزالة الضجيج والمعلومات غير المرغوبة من الصور.

  4. ما هي التوصيات التي قدمها البحث لتحسين النظام؟

    التوصيات تشمل تطوير النظام ليشمل مراحل التشخيص والتصنيف الآلي، واستخراج سمات إضافية للمناطق الورمية، وتعزيز التعاون مع الأطباء المختصين لتحسين دقة النتائج.


References used
B.Senthilkumar,G.Umamaheswari,Combination of Novel Enhancement Technique and Fuzzy C Means Clustering Technique in Breast Cancer Detection. Biomed Res-India 2013 Volume 24 Issue 2,252-257
S.SAHEB BASHA, DR.K.SATYA PRASAD, Automatic detection of breast cancer mass in mammograms using morphological operators and fuzzy c –means clustering. Journal of Theoretical and Applied Information Technology. 2009,704-709
VALLIAPPAN Raman, PUTRA Sumari, MANDAVA Rajeswari, A Theoretical Methodology and Prototype Implementation for Detection Segmentation Classification of Digital Mammogram Tumor by Machine Learning. IJCSI International Journal of Computer Science Issues. Vol. 7, Issue 5, September 2010,38-44
rate research

Read More

A mammogram is the best option for early detection of breast cancer, Computer Aided Diagnostic systems(CADs) developed in order to improve the diagnosis of mammograms. This paper presents a proposed method to automatic images segmentation dependin g on the Otsu's method in order to detect microcalcifications and mass lesions in mammogram images. The proposed technique is based on three steps: (a) region of interest (ROI), (b) 2D wavelet transformation, and (c) OTSU thresholding application on ROI. The method tested on standard mini- MIAS database. It implemented within MATLAB software environment. Experimental results and performance evaluate results show that the proposed detection algorithm is a tool to help improve the diagnostic performance, and has the possibility and the ability to detect the breast lesions.
112 patients with suspected breast lesions were investigated using Scintimammography with 99mTc-MIBI, mammography and magnetic resonance to compare the diagnostic accuracy of Scintimammography with that of mammography and magnetic resonance in the d etecting of primary breast cancer. Excisional biopsy was taken after 7-10 days of Scintimammography. 70 patients were diagnosed with breast cancer; 55 palpable and 15 non-palpable lesions, while 42, 30 palpable and 12 non-palpable were diagnosed as benign lesions. The sensitivity of the three methods were high and approximate (89% by Scintimammography, 90% by mammography and 94% by magnetic resonance), while Scintimammography showed higher specificity (86%) versus 21% for mammography and 50% for magnetic resonance. The high specificity in addition to high positive (91%) and negative (82%) predictive values of Scintimammography resulted in a highly accurate diagnostic (87%) method compared to mammography (64%) and magnetic resonance (78%) procedures. Through the complementary use of Scintimammography it is possible to increase the sensitivity for the detection of breast cancer. In patients in whom the status of a palpable breast mass remains unclear, Scintimammography may help to reduce the amount of unnecessary biopsies.
Breast cancer is the second leading cause of death of women in the world. The early detection gives a better chance to cure it. Physicians diagnose breast tumors by analyzing the characteristics of the lesion in ultrasound images. Shape data, provi ded by a tumor contour, is important to physicians in making diagnostic decisions. However, due to the increasing use of technology in medicine, a computer aided detection systems (CAD) have been built to help the expert. This research focuses on using a level-set method as an effective lesion segmentation method for breast ultrasound images. By applying non-local means filter on image, the unwanted speckle noise will be removed and the image's important details will be preserved. Then the initial contours are sketched using the GUI in order to apply level-set method which delineates the contour of the lesion in breast ultrasound image. The proposed method was found to determine the breast tumor contours that are very similar to manual-sketched contours (about 96%).
choose the right way to dividing set of data with high dimensions to clusters in specific field and comparison the different subspace clustering algorithms and present the applications and usage
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا