نقترح نظام توليد سيناريو حوار شخصي ينقل معلومات فعالة ومتماسكة مع طريقة تلخيص الاستخراجية في الوقت الفعلي محسن بواسطة جهاز ISING.يتم صياغة مشكلة التوزيع كمشكلة تحسين ثنائي غير مكسومة من الدرجة الثانية، والتي تستخرج الجمل التي تعظيم مجموع درجة فائدة المستخدم في جمل الوثائق مع هيكل الخطاب لكل وثيقة ووقت الكلام الكلي كقيود.لتقييم الطريقة المقترحة، قمنا ببناء مقالة إخبارية كوربوس بشراح بنية الخطاب ومحات المستخدمين ومصالحهم في الجمل والمواضيع.أكدت النتائج التجريبية أن المروحة الرقمية، التي تعد آلة ISINE HELLING مقرا لها، يمكن أن تحل طراز Quebo الخاص بنا في وقت عملي دون انتهاك القيود باستخدام هذه البيانات.
We propose a personalized dialogue scenario generation system which transmits efficient and coherent information with a real-time extractive summarization method optimized by an Ising machine. The summarization problem is formulated as a quadratic unconstraint binary optimization (QUBO) problem, which extracts sentences that maximize the sum of the degree of user's interest in the sentences of documents with the discourse structure of each document and the total utterance time as constraints. To evaluate the proposed method, we constructed a news article corpus with annotations of the discourse structure, users' profiles, and interests in sentences and topics. The experimental results confirmed that a Digital Annealer, which is a simulated annealing-based Ising machine, can solve our QUBO model in a practical time without violating the constraints using this dataset.
References used
https://aclanthology.org/
This is a research proposal for doctoral research into sarcasm detection, and the real-time compilation of an English language corpus of sarcastic utterances. It details the previous research into similar topics, the potential research directions and the research aims.
The Histogram of Oriented Gradient
(HOG) was used to construct the Support Vector Machine (SVM)
workbook. This method was applied using C++ programming
language and OpenCV and Dlib Libraries.
We present a system to support simultaneous interpreting in specific domains. The system is going to be developed through a strong synergy among technicians, mostly experts on both speech and text processing, and end-users, i.e. professional interpre
Recently, a class of tracking techniques called "tracking by detection" has been shown to give promising results at real-time speeds. These methods train a discriminative classifier in an online manner to separate the object from the background. This
Multimodal pre-training has propelled great advancement in vision-and-language research. These large-scale pre-trained models, although successful, fatefully suffer from slow inference speed due to enormous computational cost mainly from cross-modal