Do you want to publish a course? Click here

مقارنة بين تحويل الحواف و التحويل المويجي المتقطع و التحويل التجيبي المتقطع في تطبيق العلامة المائية على الصور الرقمية

1490   2   211   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

A digital watermark is a signal that is embedded into digital data (text, image, audio, video) in a manner that allows it to be extracted later. This is done by embedding a pattern which contains the author's data into the digital data. In this research, we propose a comparison between three types of transformations for embedding a watermark in the frequency domain into digital images in an efficient and secure method that allows the watermarking any type of digital images with good perceptibility.


Artificial intelligence review:
Research summary
تقدم هذه الورقة البحثية مقارنة بين ثلاثة أنواع من التحويلات المستخدمة لتضمين العلامة المائية في الصور الرقمية. التحويلات الثلاثة هي التحويل التجيبي المتقطع (DCT)، التحويل المويجي المتقطع (DWT)، وتحويل الحواف (CT). تهدف الدراسة إلى تقييم فعالية كل من هذه التحويلات في تضمين العلامة المائية من حيث جودة الصورة المعلمة مائياً، دقة استخراج العلامة المائية، وزمن التنفيذ. أظهرت النتائج أن تحويل الحواف (CT) هو الأفضل بين التحويلات الثلاثة، حيث يحافظ على جودة عالية للصورة المعلمة مائياً، يتطلب أقل وقت تنفيذ، ويسمح باسترجاع العلامة المائية بدقة عالية. ومع ذلك، فإن جميع التحويلات الثلاثة تواجه تحديات في مقاومة الهجمات الهندسية مثل التدوير.
Critical review
دراسة نقدية: تقدم هذه الورقة البحثية مقارنة شاملة بين ثلاثة أنواع من التحويلات المستخدمة في تضمين العلامة المائية في الصور الرقمية، مما يساهم في فهم أعمق لفعالية كل تحويل. ومع ذلك، يمكن تحسين الدراسة من خلال تضمين المزيد من التفاصيل حول كيفية تأثير كل تحويل على جوانب أخرى من الصور مثل الألوان والتفاصيل الدقيقة. كما أن الدراسة قد استفادت من تحليل أعمق للهجمات الهندسية وكيفية تحسين مقاومة العلامات المائية لهذه الهجمات. بالإضافة إلى ذلك، يمكن أن تكون هناك توصيات أكثر وضوحاً حول التطبيقات العملية لكل نوع من التحويلات.
Questions related to the research
  1. ما هي التحويلات الثلاثة التي تم مقارنتها في الدراسة؟

    التحويلات الثلاثة هي التحويل التجيبي المتقطع (DCT)، التحويل المويجي المتقطع (DWT)، وتحويل الحواف (CT).

  2. ما هو الهدف الرئيسي من هذه الدراسة؟

    الهدف الرئيسي هو تقييم فعالية كل من التحويلات الثلاثة في تضمين العلامة المائية في الصور الرقمية من حيث جودة الصورة، دقة استخراج العلامة المائية، وزمن التنفيذ.

  3. أي من التحويلات الثلاثة أظهر أفضل أداء في الدراسة؟

    تحويل الحواف (CT) أظهر أفضل أداء من بين التحويلات الثلاثة، حيث حافظ على جودة عالية للصورة المعلمة مائياً، تطلب أقل وقت تنفيذ، وسماح باسترجاع العلامة المائية بدقة عالية.

  4. ما هي التحديات التي تواجه التحويلات الثلاثة في مقاومة الهجمات؟

    التحديات الرئيسية هي مقاومة الهجمات الهندسية مثل التدوير، حيث تواجه جميع التحويلات الثلاثة صعوبة في الحفاظ على العلامة المائية عند تعرض الصور لهذه الهجمات.


References used
ALSAIF K and ABDULLAH A, 2013- "Contourlet Transform and Histogram Equalization for Brightness Enhancement of Color Image". International Journal of Computer Networks and Communications Security, Vol. 1, No. 4,140-143
BABU S and RAJESH V and NAVAYA L and BHAVYASR G, 2013- "The Contourlet Transform For The Application In Image Denoising".International Journal Of Systems And Technologies, Vol. 6, No. 1, 38-48
CHETRI C and DESAI S, 2014- "Review Of Imperceptible Techniques For Still Digital Image Watermarking". International Journal of Advanced Research in Computer Engineering & Technolo, Vol. 3, No. 2, 389-395
rate research

Read More

In this paper, we propose a new method to embed digital watermarking in audio files, using Discrete Wavelet Transform (DWT) and the way to extract the watermark data. The method efficiency is measured using Peak Signal –to-Noise Ratio (PSNR) , No rmalized Correlation Coefficient (NC). The advantage of our method is the robustness against several attacks and compression.
Epilepsy is a chronic neurological disorder that occurs in the brain، and affects approximately 2% of people around the world، where epilepsy patients face a lot of difficulties in everyday life due to the occurrence of seizures. Electroencephalog ram (EEG) is used in the automated detection of epileptic seizures، which has Characteristics of non-linear and non-stationary. In this research، we conducted automated detection of the seizures from the scalp EEG signals using a Level 5 Discrete Wavelet Transforms DWT to analyze the signal and extracting statistical features (maximum، minimum، mean، average ، standard deviation، the ratio between the mean values) and Categorizing using artificial neural networks ANN for classification. The suggested detection method has 89.85% detection accuracy with 90.60% sensitivity ، and 89.1% specificity.
In our research, we used a video file as a cover media to hide the text. This method provides a high quality in display and authenticity in data transfer. We chose specific frames from the video file and we apply DWT to hide the encryption text, which ensure that the text file is delivered correctly and secretly.
Image compression is one of the most important branches of digital image processing. It reduces the size of the captured images and minimizes the storage space on the drivers to speed up the transferring and transmission. In this paper we will pre sent a new approach for compressing stereo images based on three algorithms; the first one is comparing the two images that perform the stereoscopic view by noticing the great similarities between them and encoding the difference between the two images instead of encoding the whole image. The second one is reducing the redundancy between the Pixels using a 2D Digital Curvelet Transformation so we can utilize the great ability to represent the curves in the image with minimum number of coefficients. Then quantize them and remove undesirable coefficient. The low number of coefficient contains most of image data. Last one is using Huffman Encoding and take advantage of the lossless property so we can encode image and reduce the size of data without getting any image distortion or lose any part of this image. The performance of the proposed algorithm evaluated using Compression Ratio standard which is the number of the image bits after compression to the number of the original image bits before compression. Also, Peak Signal to Noise Ratio standard (PSNR) which represent the similarity between the restored image and the original image. In final, the Mean Square Error standard (MSE) which represent the error between the restored image and original image. In conclusion, the main objective here is to get the lowest rate for image compression ratio with the highest value for the image quality PSNR at the lowest value of the errors MSE.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا