Do you want to publish a course? Click here

Stereoscopic Image Compression using Disparity Estimation between Images and 2D Digital Curvelet Transformation

ضغط الصور المجسمة بتقدير الفرق بين الصورتين و استخدام التحويل الانحنائي الرقمي ثنائي البعد

3051   1   252   0 ( 0 )
 Publication date 2015
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Image compression is one of the most important branches of digital image processing. It reduces the size of the captured images and minimizes the storage space on the drivers to speed up the transferring and transmission. In this paper we will present a new approach for compressing stereo images based on three algorithms; the first one is comparing the two images that perform the stereoscopic view by noticing the great similarities between them and encoding the difference between the two images instead of encoding the whole image. The second one is reducing the redundancy between the Pixels using a 2D Digital Curvelet Transformation so we can utilize the great ability to represent the curves in the image with minimum number of coefficients. Then quantize them and remove undesirable coefficient. The low number of coefficient contains most of image data. Last one is using Huffman Encoding and take advantage of the lossless property so we can encode image and reduce the size of data without getting any image distortion or lose any part of this image. The performance of the proposed algorithm evaluated using Compression Ratio standard which is the number of the image bits after compression to the number of the original image bits before compression. Also, Peak Signal to Noise Ratio standard (PSNR) which represent the similarity between the restored image and the original image. In final, the Mean Square Error standard (MSE) which represent the error between the restored image and original image. In conclusion, the main objective here is to get the lowest rate for image compression ratio with the highest value for the image quality PSNR at the lowest value of the errors MSE.


Artificial intelligence review:
Research summary
يهدف هذا البحث إلى تقديم طريقة جديدة لضغط الصور المجسمة باستخدام تقدير الفرق بين الصورتين والتحويل الانحنائي الرقمي ثنائي البعد. تعتمد الطريقة على ثلاث خوارزميات: الأولى تقارن بين الصورتين المكونتين للمنظر المجسم وتقوم بترميز الفرق بينهما بدلاً من ترميز الصورة بالكامل، الثانية تستخدم التحويل الانحنائي الرقمي لتقليل الفائض بين عناصر الصورة، والثالثة تستخدم ترميز هوفمان لضغط البيانات بدون فقد. يتم تقييم أداء الخوارزمية المقترحة باستخدام معايير نسبة ضغط الصورة (Compression Ratio)، جودة الصورة (PSNR)، ومتوسط مربعات الأخطاء (MSE). النتائج تظهر أن الطريقة المقترحة تحقق نسبة ضغط جيدة مع الحفاظ على جودة الصورة وتقليل الأخطاء.
Critical review
دراسة نقدية: يعتبر البحث مساهمة قيمة في مجال ضغط الصور المجسمة، حيث يقدم طريقة مبتكرة تجمع بين عدة خوارزميات لتحقيق ضغط فعال. ومع ذلك، يمكن تحسين البحث من خلال تقديم مقارنة أكثر تفصيلاً مع الطرق الأخرى المستخدمة في ضغط الصور، بالإضافة إلى تقديم تحليل أعمق لأداء الخوارزمية في حالات مختلفة من الصور المجسمة. كما أن استخدام عينات متنوعة من الصور يمكن أن يعزز من موثوقية النتائج. من الجيد أيضاً أن يتم اختبار الطريقة على فيديوهات مجسمة لمعرفة مدى فعاليتها في هذا المجال.
Questions related to the research
  1. ما هي الخوارزميات الثلاث المستخدمة في الطريقة المقترحة لضغط الصور المجسمة؟

    الخوارزميات الثلاث هي: المقارنة بين الصورتين المكونتين للمنظر المجسم وترميز الفرق بينهما، استخدام التحويل الانحنائي الرقمي لتقليل الفائض بين عناصر الصورة، واستخدام ترميز هوفمان لضغط البيانات بدون فقد.

  2. ما هي المعايير المستخدمة لتقييم أداء الخوارزمية المقترحة؟

    المعايير المستخدمة هي نسبة ضغط الصورة (Compression Ratio)، جودة الصورة (PSNR)، ومتوسط مربعات الأخطاء (MSE).

  3. ما هي الفائدة الرئيسية من استخدام التحويل الانحنائي الرقمي في ضغط الصور المجسمة؟

    الفائدة الرئيسية هي قدرته العالية على تمثيل الانحناءات داخل الصورة بأقل عدد من المعاملات، مما يقلل من حجم البيانات المطلوبة لتمثيل الصورة ويحسن من نسبة الضغط.

  4. كيف يتم استخدام ترميز هوفمان في الطريقة المقترحة؟

    يتم استخدام ترميز هوفمان لترميز خرج التحويل الانحنائي الرقمي ومصفوفة الفرق بين الصورتين، مما يساعد في ضغط البيانات بدون فقدان أي جزء من الصورة أو تشويهها.


References used
Agarwal,A.,Compressing Stereo Images Using a Reference Image and the Exhaustive Block Matching Algorithm to Estimate Disparity between the Two Images. Vol. 32, Canada: International Journal of Advanced Science and Technology (IJAST), 2011
Aziz, T.,& Dolly,D.,Motion Estimation and Motion Compensated Video Compression Using DCT And DWT. Vol. 2,International Journal of Emerging Technology and Advanced Engineering (IJETAE),2012, 667-671
Dalvir, K.,&Kamaljit,K.,Huffman Based LZW Lossless Image Compression Using Retinex Algorithm. Vol. 2, International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE),2013,3145-3151
rate research

Read More

Considering the increasing importance of stereo image compression and Fractal geometry becoming one of the most important fields of modern science ,we applied fractal image compression based on quadtree portioning method and global search algorithm , on a group of stereo image pairs . As the stereo image consists of two planar images , left and right .Both the left image ( reference image ) and the disparity map between left and right images , were compressed using fractal compression . We applied both block matching algorithm and Semi Global Method (SGM)to obtain the disparity map. The left image and the depth map were reconstructed using fractal decompression while the right image (target image ) was reconstructed using the reconstructed left image , disparity map and the error image between the original right image and the reconstructed right image that was build from the left image and the disparity map . The results were evaluated using quality objective measures which are MSE (Mean Square Error ) and PSNR (Peak Signal to Noise Ratio) and efficiency objective measures which are CR(Compression Ratio) and compression time . The results were compared with JPEG compression of stereo pairs based on Discrete Cosine Transform DCT and JPEG2000 compression of stereo pairs on stereo image based on Discrete Wavelet Transform DWT .
The transformation of coordinates between the global coordinate system yield ellipsoid WGS84 (World Geodetic System 1984) and the local coordinate system yield ellipsoid Clark1880 in different regions of Syria, is the essential step in the effectiv e use of GNSS (Global Navigation Satellite Systems) surveying techniques in Syria, and the transformation occurs with 3D transformation between one ellipsoid and another, or 2D transformation directly between two planar. The transformation must be understood, analyzed and tested. The research is about the accuracy of the 2D transformation in small area to give coordinates can be directly used in different surveying and engineering works, and about studying the common points number and their distribution effect on transformation accuracy, and conclude that the biggest effect on transformation accuracy is for the common points distribution.
The amount of digital images that are produced in hospitals is increasing rapidly. Effective medical images can play an important role in aiding in diagnosis and treatment, they can also be useful in the education domain for healthcare students by explaining with these images will help them in their studies, new trends for image retrieval using automatic image classification has been investigated for the past few years. Medical image Classification can play an important role in diagnostic and teaching purposes in medicine. For these purposes different imaging modalities are used. There are many classifications created for medical images using both grey-scale and color medical images. In this paper, different algorithms in every step involved in medical image processing have been studied. One way is the algorithms of preprocessing step such as Median filter [1], Histogram equalization (HE) [2], Dynamic histogram equalization (DHE), and Contrast Limited Adaptive Histogram Equalization (CLAHE). Second way is the Feature Selection and Extraction step [3,4], such as Gray Level Co-occurrence Matrix(GLCM). Third way is the classification techniques step, which is divided into three ways in this paper, first one is texture classification techniques, second one is neural network classification techniques, and the third one is K-Nearest Neighbor classification techniques. In this paper, we have use MRI brain image to determine the area of tumor in brain. The steps started by preprocessing operation to the image before inputting it to algorithm. The image was converted to gray scale, later on remove film artifact using special algorithm, and then remove the Skull portions from the image without effect on white and gray matter of the brain using another algorithm, After that the image enhanced using optimized median filter algorithm and remove Impurities that produced from first and second steps.
Culture heritage conservation is necessary to produce the initial technical documentation. This one provides plans that help in using the best approaches to protect culture heritage. Images are considered as an important source of data required to achieve this documentation, where they can be used to extract semantic and 2D-3D geometric data. In case of large planimetric objects, we can use the controlled mosaics as source of these data. In the present study, instead of using professional photogrammetric software, we propose an alternative solution to document the large planimetric historical objects. This approach is based on producing a mosaics from a group of digital rectified photos by using some capabilities of a GIS that are originally applied to produce mosaics from overlapped maps. The produced mosaic well then be used as semantic and geometric documentation source in this GIS. Geographic Information System facilitates largely the conservation, development and renovation process of historical areas. To ensure the validity of the resulted mosaics, we will compare it with a mosaics calculated from the same photos by using a professional photogrammetric software.
Recently، digital image authentication technologies have gained much attention because of their importance in many multimedia applications. In general digital images are transmitted over unsaved media such as the internet and many types of computer networks. Applications may require a large amount of safety such as military applications and medical applications. Therefore the digital images must be protected against any modifications، which may lead to influence the decisions that associated with them. In this paper، a general scheme based on Steganography & Perceptual Image Hashing techniques was proposed to enhance the security of digital image transmission. In the final test stage, we checked the accuracy of the proposed scheme against potential modifications was studied, by applying different levels of compression and changing the contrast & brightness level of the image. For analyzing the final results, we computed the matching ratio between the original hash vector and the embedded hash vector. As a result، we achieved a near perfect match ratio even after applying the image compression level or changing its brightness level (approximately 99.9%), while the match ratio decreased significantly with the increase of the contrast level of the image (approximately 94%).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا