Do you want to publish a course? Click here

Using DWT to Include Digital Watermark in Audio

استخدام تحويل الموجة المتقطع لتضمين الطعامة المائية الرقمية في الصوت

1218   1   35   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we propose a new method to embed digital watermarking in audio files, using Discrete Wavelet Transform (DWT) and the way to extract the watermark data. The method efficiency is measured using Peak Signal –to-Noise Ratio (PSNR) , Normalized Correlation Coefficient (NC). The advantage of our method is the robustness against several attacks and compression.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية مشكلة حماية حقوق الملكية الفكرية للوسائط الرقمية في ظل انتشار الإنترنت وسهولة نسخ وتوزيع الملفات الرقمية. تقترح الورقة استخدام تقنية العلامة المائية الرقمية كحل لهذه المشكلة، وذلك من خلال تضمين معلومات عن المؤلف أو حقوق النشر داخل البيانات الرقمية بطريقة غير محسوسة. تقدم الورقة طريقة جديدة لتضمين العلامة المائية الرقمية في ملفات الصوت من نوع WAV باستخدام تحويل الموجة المتقطع (DWT) وخوارزمية التشفير RSA. يتم تقييم فعالية الطريقة من خلال مقاييس مثل معدل طاقة الإشارة إلى الضجيج (PSNR) ومعامل الارتباط (NC). تظهر النتائج أن الطريقة المقترحة تتميز بالمتانة ومقاومتها للهجمات الشائعة مثل ضجيج غوص الأبيض، وإعادة التكميم، وتمرير فلاتر الترددات المرتفعة والمنخفضة، وضغط MP3. تقترح الورقة أيضاً تطبيق الطريقة على وسائط أخرى مثل الصور والفيديوهات وملفات الصوت من أنماط أخرى، وكذلك على المكالمات الهاتفية لتوثيقها جيولوجياً.
Critical review
دراسة نقدية: تقدم الورقة البحثية حلاً مبتكراً لمشكلة حماية حقوق الملكية الفكرية للوسائط الرقمية باستخدام تحويل الموجة المتقطع وخوارزمية التشفير RSA. ومع ذلك، يمكن ملاحظة بعض النقاط التي قد تحتاج إلى تحسين. أولاً، لم يتم التطرق بشكل كافٍ إلى تأثير حجم العلامة المائية على جودة الصوت، وهو عامل مهم يجب مراعاته. ثانياً، قد يكون من المفيد تقديم مقارنة أوسع مع تقنيات أخرى لتضمين العلامة المائية الرقمية لتوضيح مدى تفوق الطريقة المقترحة. أخيراً، يمكن تحسين الورقة من خلال تقديم تجارب إضافية على وسائط مختلفة لتأكيد فعالية الطريقة في سياقات متعددة.
Questions related to the research
  1. ما هي المشكلة الرئيسية التي تعالجها الورقة البحثية؟

    المشكلة الرئيسية هي كيفية حماية حقوق الملكية الفكرية للوسائط الرقمية في ظل سهولة نسخ وتوزيع الملفات الرقمية عبر الإنترنت.

  2. ما هي التقنية المقترحة في الورقة لتضمين العلامة المائية الرقمية في ملفات الصوت؟

    التقنية المقترحة هي استخدام تحويل الموجة المتقطع (DWT) وخوارزمية التشفير RSA لتضمين العلامة المائية الرقمية في ملفات الصوت من نوع WAV.

  3. ما هي المقاييس المستخدمة لتقييم فعالية الطريقة المقترحة؟

    تم استخدام معدل طاقة الإشارة إلى الضجيج (PSNR) ومعامل الارتباط (NC) لتقييم فعالية الطريقة المقترحة.

  4. ما هي الهجمات التي تم اختبار متانة الطريقة المقترحة ضدها؟

    تم اختبار متانة الطريقة المقترحة ضد هجمات مثل ضجيج غوص الأبيض، وإعادة التكميم، وتمرير فلاتر الترددات المرتفعة والمنخفضة، وضغط MP3.


References used
A.NIKOLA, I.PITAS, 2003, Asymptotically optimal detection for additive watermarking in the DCT and DWT domains , IEEE Transactions on Image Processing, Vol. 12, No. 5 ,Pp. 563–571
B.L.GUNJAL, 2011, Wavelet based color image watermarking scheme giving high robustness and exact correlation, International Journal of Emerging Trends in Engineering and Technology, Vol.1, No. 1, India
G.Gunasekaran, B.Kumar Ray, 2014, Encrypting And Decrypting Image Using Computer Visualization Techniques, ARPN Journal of Engineering and Applied Sciences, Vol. 9, No. 5, Pp. 646-650
rate research

Read More

A digital watermark is a signal that is embedded into digital data (text, image, audio, video) in a manner that allows it to be extracted later. This is done by embedding a pattern which contains the author's data into the digital data. In this r esearch, we propose a comparison between three types of transformations for embedding a watermark in the frequency domain into digital images in an efficient and secure method that allows the watermarking any type of digital images with good perceptibility.
Epilepsy is a chronic neurological disorder that occurs in the brain، and affects approximately 2% of people around the world، where epilepsy patients face a lot of difficulties in everyday life due to the occurrence of seizures. Electroencephalog ram (EEG) is used in the automated detection of epileptic seizures، which has Characteristics of non-linear and non-stationary. In this research، we conducted automated detection of the seizures from the scalp EEG signals using a Level 5 Discrete Wavelet Transforms DWT to analyze the signal and extracting statistical features (maximum، minimum، mean، average ، standard deviation، the ratio between the mean values) and Categorizing using artificial neural networks ANN for classification. The suggested detection method has 89.85% detection accuracy with 90.60% sensitivity ، and 89.1% specificity.
The sound is an essential component of multimedia, and due to the needto be used in many life applications such as television broadcasting andcommunication programs, so it was necessary for the existence of audio signal processing techniquessuch as compressing, improving, and noisereduction. Data compression process aims to reduce the bit rate used, by doing encoding information using fewer bits than the original representation for transmitting and storing. By this process,the unnecessary information is determined and removed, that means it gives the compressed information for useable compression, which we need as a fundamental, not the minutest details. This research aims to study how to process sound and musical signal. It's a process that consists of a wide range of applications like coding and digital compression for the effective transport and storage on mobile phones and portable music players, modeling and reproduction of the sound of musical instruments and music halls and the harmonics of digital music, editing digital music, and classification of music content, and other things.
Abstract We introduce Generative Spoken Language Modeling, the task of learning the acoustic and linguistic characteristics of a language from raw audio (no text, no labels), and a set of metrics to automatically evaluate the learned representations at acoustic and linguistic levels for both encoding and generation. We set up baseline systems consisting of a discrete speech encoder (returning pseudo-text units), a generative language model (trained on pseudo- text), and a speech decoder (generating a waveform from pseudo-text) all trained without supervision and validate the proposed metrics with human evaluation. Across 3 speech encoders (CPC, wav2vec 2.0, HuBERT), we find that the number of discrete units (50, 100, or 200) matters in a task-dependent and encoder- dependent way, and that some combinations approach text-based systems.1
This research aimed to study the possibility of using a digital camera in estimating soil color and compare it with Munsell soil color chart, and then study the correlation between soil color as important classification properties and soil content of organic matter, soil content of total carbonate and soil Texture.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا