Do you want to publish a course? Click here

Studying of the solution's stability of a generalized non stationary stochastic differential equations system

دراسة استقرار حل جملة معادلات تفاضلية عشوائية لا توقفية مضطربة معممة

2341   2   103   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Defining some of the essential definitions and conceptions. Stochastic matrix. Stability. Approximate stability. Approximate stability in the quadratic middle. Formula of a system of unsettled non stationary stochastic differential equations. Formula of a generalized system of unsettled non- stationary stochastic differential equations. Foundations of a system of differential equations that divines the partial moments of the second order. Foundations of a system of differential equations that divines matrices of Lyapunov's functions. The necessary and sufficient conditions formatrisses of Lyapunov's functions to assure the stability of the studied system's solution approximately in the quadratic middle.



References used
Al arjeh S. Construction Lyapunov's function for stochastic system differential equation. journal of al Baath UNV., T, 31. 2009
APARANA, G, Systems Analysis: Concepts & Applications. CBS, Delhi, 1993, 303 P
BURTON, T, 1994 – An example on the asymptotic stability for functional differential equations, Non liner Anal. Vol, 8, No. 3,365 – 368
rate research

Read More

تتضمن الرسالة أربعة فصول : الفصل الأول : ويتضمن بعض المفاهيم والتعاريف والمبرهنات التي تتعلق بالبحث. الفصل الثاني : دراسة استقرار جملة معادلات تفاضلية خطية لا توقفيه ذات تأخير زمني . الفصل الثالث :دراسة استقرار حل جملة المعادلات التفاضلية الخطية ذات تأخير زمني . الفصل الرابع : دراسة استقرار حل المعادلات التفاضلية لا توقفية ذات تأخر زمني باستخدام نظرية النقطة الثابتة
We study the asymptotic behavior of solutions of a nonlinear differential equation. Using Bihari's integral inequality, we obtain sufficient conditions for all of continuable solutions to be asymptotic.
Most of mathematical physics problems can be translated into solve one partial differential equation or more with specific initial conditions and boundary conditions. This is called the boundary value problem for the differential equations. This paper studies the solution of systems of hyperbolic and parabolic partial differential equations assuming some boundary conditions in different domains in the plane xoy. In this paper we have proved theorem about the existence and uniqueness of the solutions. This article is considered to be a continuation to the works of Alimove, Ssallah Aldinov, Gooraev and Alhamad.......
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا