يتعلق البحث بالنموذج الرياضي لجسم مرن مؤلف من بلورات، متماثل المناحي و متجانس , و يعاني من تشوهات مرنة صغيرة, محورية التناظر, و يخضع إلى حرارة, في النظرية الخطية للمرونة دقيقة الاستقطاب, مركزية التناظر, المعينة بستة ثوابت مادية. في هذا البحث لنعرض أولا المعادلات التحريكية, التي تحكم الإزاحات و الدورانات و الحرارة للجسم المعتبر من أجل حالة التناظر المحوري, الأولى للإنفعالات المرنة.
This paper concerns the mathematical, linear model of micropolar
elastic, homogeneous and isotropic body, of axisymetric state of
small deformations, in the frame of the linear theory of micropolar
elasticity with six material constants . In the paper, first
we introduce the dynamic displacements-rotation-temperature
equations for the considerable body in the axisymetric state of
small deformation , subjected to temperature field.
References used
Gerrit van Dijk , 2013 - Distribution Theory , De Gtuyter Graduate Lectures, Deutsche Nationalbibliothek , Berlin
Debnath , L & Bhatta , D , 2007 – Integral Transforms and their Applications, ( Second Edition), CRC Press, Boca Raton, Florida
B.Słotwińska & J.Dyszlewicz , 1996- The Cerruti problem, Studia Geotechnica et Machanic ,vol.18,No 1-2
This paper concerns the mathematical model of Ignaczak type for
the Eringen-Nowacki micropolar elastic body of six material
constants, coupled with temperature fields, and initially occupying
a bounded simply connected region in R3.
This paper aims to calculate regular classical and complementary, so regular total Ignaczak solutions coupled with temperature field ,occupying R3 , and with vanishing stresses and temperature on the boundary.
This paper relates to the mathematical, linear model of micropolar
hemitropic elastic, homogeneous and isotropic body, of three
dimensional state of small deformations, in the frame of the linear
coupled dynamical micropolar, hemitropic thermoelasticity with
nine material constants.
This paper concerns the mathematical model of Ignaczak kind for
the Eringen-Nowacki micropolar elastic body with six material
constants, subjected to temperature field, and initially occupying
a bounded simply connected region.
This paper concerns the mathematical, linear model of elastic,
homogeneous and isotropic body, with neglected structure and
small elastic deformations, in the frame of linear theory of
elasticity; proposed by Hooke, and shortly called (H).