Do you want to publish a course? Click here

Artificial Neural Network Model to Predict Water Levels in Qattinah Lake

أنموذج شبكة عصبية صنعية للتنبؤ بمنسوب المياه في بحيرة قطينة

1693   0   100   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This study includes the possibility of using Artificial neural networks (ANNs) with back-propagation algorithm in a short-term prediction of water level in Qattinah Lake. The data used are the water level data in the lake and rainfall data for the period from 1/5/2007 to 28/2/2005. 2009).


Artificial intelligence review:
Research summary
تتناول هذه الدراسة إمكانية استخدام الشبكات العصبية الاصطناعية مع خوارزمية الانتشار العكسي للتنبؤ قصير المدى بمناسيب المياه في بحيرة قطينة على نهر العاصي. البيانات المستخدمة تشمل مناسيب المياه في البحيرة وبيانات الأمطار للفترة من 1 مايو 2007 حتى 28 فبراير 2009. أظهرت النتائج أن الشبكة العصبية الاصطناعية ذات الهيكلية (1–10–10–4) والمعايرة بخوارزمية الانتشار العكسي تعتبر تقنية فعالة للتنبؤ بتغيرات مناسيب المياه ليوم مقدماً، بمعامل ارتباط (0.997) وجذر متوسط مربعات الأخطاء (3.12 سم). توصي الدراسة باستخدام الشبكات العصبية الاصطناعية للتنبؤ بالتدفقات الواردة إلى البحيرة وحجوم المياه المخزنة فيها من أجل التنبؤ بالفيضانات القادمة على المدى القصير.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة نحو استخدام تقنيات الذكاء الاصطناعي في إدارة الموارد المائية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، الدراسة تعتمد على بيانات محدودة زمنياً (من 2007 إلى 2009)، مما قد يؤثر على دقة التنبؤات في فترات زمنية مختلفة. ثانياً، لم يتم تناول تأثير التغيرات المناخية المستقبلية على دقة النموذج، وهو أمر بالغ الأهمية في ظل التغيرات المناخية الحالية. ثالثاً، كان من الممكن تحسين الدراسة بإجراء مقارنة مع نماذج تقليدية أخرى للتنبؤ بالمناسيب لتوضيح مدى تفوق الشبكات العصبية الاصطناعية بشكل أكثر وضوحاً.
Questions related to the research
  1. ما هي الفترة الزمنية التي تم استخدام بياناتها في هذه الدراسة؟

    تم استخدام بيانات مناسيب المياه والأمطار للفترة من 1 مايو 2007 حتى 28 فبراير 2009.

  2. ما هي الهيكلية التي استخدمتها الشبكة العصبية الاصطناعية في الدراسة؟

    استخدمت الشبكة العصبية الاصطناعية هيكلية (1–10–10–4) مع خوارزمية الانتشار العكسي.

  3. ما هو معامل الارتباط الذي حققته الشبكة العصبية الاصطناعية في التنبؤ بمناسيب المياه؟

    حققت الشبكة العصبية الاصطناعية معامل ارتباط بلغ 0.997.

  4. ما هي التوصيات التي قدمتها الدراسة لاستخدام الشبكات العصبية الاصطناعية؟

    توصي الدراسة باستخدام الشبكات العصبية الاصطناعية للتنبؤ بالتدفقات الواردة إلى البحيرة وحجوم المياه المخزنة فيها من أجل التنبؤ بالفيضانات القادمة على المدى القصير.


References used
Asce Task Committee on Application of Artificial Neural Networks in Hydrology, 2000 - Artificial Neural Networks in Hydrology. I: Preliminary concepts. J. Hydrol. Eng, 115-123
Asce Task Committee on Application of Artificial Neural Networks in Hydrology, 2000 - Artificial Neural Networks in Hydrology. II: Hydrologic applications. J. Hydrol. Eng, 124- 137
THIRUMALAIAH, K; DEO, M.C, 1998 - River Stage Forecasting Using Artificial Neural Networks. Journal of Hydrologic Engineering 3, PP: 26–31
rate research

Read More

Evaporation forms one of the hydrology cycle elements that it's hard to measure its actual amounts in the field conditions, so it’s estimated by calculations of experimental relations, which depend on climatic elements data. So the research goal is t o build a mathematical model to estimate monthly evaporation amount in plain area of Syrian Coast, using Artificial Neural Network (ANN), and depending on dry air temperature, and produce comparison study between the results of network and other models. The mathematical model was built by the (NN-tool box), which is one of the v tools. A multilayer ANN architecture of error Back-propagation algorithm was built. The suitable training algorithms, number of hidden layers, number of neurons in each hidden layer, were determined. The results showed that the ANN (1-9-1) was the best model with MSE of 0.0032 for validation group, using Transfer Function Logsigmoid and Linear in hidden and output layers, respectively. A comparison model for the results obtained from the proposed ANN with EVANOV model by using SIMULINK technique was developed. This indicated that the ANN using temperature only gives results more accurate than EVANOV equation in determining evaporation.
The evaporation is one of the basic components of the hydrologic cycle and it is essential for studies such as water balance, irrigation system design and water resource management, and it requires knowledge of many climatic variables. Although, th ere are many empirical formulas available for evaporation estimate, but their performances are not all satisfactory due to the complicated nature of the evaporation process. Accordingly, this paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from HAMA by using temperature, relative humidity and wind velocity. The mathematical model was built by the (nntool-box), which is one of the MATLAB tools. The feed forward back propagation network with one hidden layer has been utilised to construct the model. Different networks with different number of neurons were evaluated. Root Mean Squared Error (RMSE) was employed to evaluate the accuracy of the proposed model. The study shows that ANN (3-14-1) was the best model with RMSE (21.5mm/month) and R2 (0.97). This study suggests using other types of neural networks for estimation of evaporation
To transcribe spoken language to written medium, most alphabets enable an unambiguous sound-to-letter rule. However, some writing systems have distanced themselves from this simple concept and little work exists in Natural Language Processing (NLP) o n measuring such distance. In this study, we use an Artificial Neural Network (ANN) model to evaluate the transparency between written words and their pronunciation, hence its name Orthographic Transparency Estimation with an ANN (OTEANN). Based on datasets derived from Wikimedia dictionaries, we trained and tested this model to score the percentage of false predictions in phoneme-to-grapheme and grapheme-to-phoneme translation tasks. The scores obtained on 17 orthographies were in line with the estimations of other studies. Interestingly, the model also provided insight into typical mistakes made by learners who only consider the phonemic rule in reading and writing.
The evaluation of surface water resources is a necessary input to solving water management problems, which includes finding a relationship between precipitation and runoff, and this relationship is a high degree of complexity. The rain of the most important factors that greatly effect on rivers discharge, and process to prediction of these flows must take this factor into account, and much of the attention and study, artificial neural networks and is considered one of the most modern methods in terms of accuracy results in linking these multiple factors and highly complex. In order to predict the runoff contained daily to Lake Dam Tishreen 16 in Latakia, the subject of our research, the application of different models of artificial neural networks (ANN), was the previous input flows and rain. Divided the data set for the period between (2006-2012) into two sets: training and test, has been processing the data before using them as inputs to the neural network using Discrete Wavelet Transform technique, to get rid of the maximum values and the values of zero, where t the analysis of time series at three levels of accuracy before they are used sub- series resulting as inputs to the Feed Forward ANN that depend back-propagation algorithm for training. The results indicated that with the structural neural network (1-2-6) Wavelet-ANN model, are the best in the representation of the characteristics studied and best able to predict runoff daily contained to Lake Dam Tishreen 16 for a day in advance, where he reached the correlation coefficient the root of the mean of squared-errors (R2 = 0.96, RMSE = 1.97m3 / sec), respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا