Do you want to publish a course? Click here

Expert Neural System to parse Arabic Language

منظومة عصبونية خبيرة لإعراب اللغة العربية

877   0   42   0 ( 0 )
 Publication date 2007
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

New intelligent neural network built in an expert system has been designed to parse Arabic Language. Arabic sentences have been studied and analyzed, also classified into new syntactical fields. Each syntactical field consists of essential sentence components; verb, object, ….All emerging Arabic sentences have been calculated and detailed into verbal and noun fields.


Artificial intelligence review:
Research summary
تتناول الورقة البحثية موضوع النظم الخبيرة والشبكات العصبية في تحليل الجمل النحوية. يتم التركيز على كيفية استخدام النظم المبنية على القواعد والمعارف لتحليل الجمل واختيار الحقل النحوي الصحيح لها. يتم تقديم أمثلة متعددة على تحليل الجمل وتوضيح كيفية تطبيق القواعد النحوية المختلفة على الكلمات والجمل. كما يتم استخدام برمجيات مثل Visual Prolog 6.1 لتطوير النظم الخبيرة وتطبيقها على تحليل الجمل. تتضمن الورقة أيضًا أمثلة على كيفية استخدام الشبكات العصبية لترشيح الدخولات وتحديد الحقول النحوية الصحيحة للجمل.
Critical review
دراسة نقدية: الورقة البحثية تقدم موضوعًا مهمًا في مجال تحليل الجمل النحوية باستخدام النظم الخبيرة والشبكات العصبية. ومع ذلك، يمكن ملاحظة بعض النقاط التي قد تحتاج إلى تحسين. أولاً، الورقة تفتقر إلى توضيح كافٍ لبعض المفاهيم الأساسية، مما قد يجعل من الصعب على القارئ غير المتخصص فهم بعض الأجزاء. ثانيًا، كان من الممكن تقديم المزيد من الأمثلة العملية والتطبيقات الواقعية لتوضيح كيفية استخدام النظم الخبيرة والشبكات العصبية في تحليل الجمل النحوية بشكل أفضل. أخيرًا، الورقة تفتقر إلى مناقشة بعض التحديات المحتملة التي قد تواجه تطبيق هذه النظم في الواقع وكيفية التغلب عليها.
Questions related to the research
  1. ما هو الهدف الرئيسي من الورقة البحثية؟

    الهدف الرئيسي من الورقة البحثية هو تحليل الجمل النحوية باستخدام النظم الخبيرة والشبكات العصبية واختيار الحقل النحوي الصحيح للجمل.

  2. ما هي البرمجيات المستخدمة في تطوير النظم الخبيرة في الورقة؟

    تم استخدام برمجية Visual Prolog 6.1 في تطوير النظم الخبيرة في الورقة.

  3. ما هي التحديات التي قد تواجه تطبيق النظم الخبيرة في تحليل الجمل النحوية؟

    التحديات قد تشمل تعقيد القواعد النحوية وتنوعها، وصعوبة التعامل مع الاستثناءات النحوية، والحاجة إلى قاعدة بيانات واسعة وشاملة للقواعد والمعارف.

  4. كيف يمكن تحسين الورقة البحثية لتكون أكثر فائدة للقراء؟

    يمكن تحسين الورقة بإضافة المزيد من الأمثلة العملية والتطبيقات الواقعية، وتوضيح المفاهيم الأساسية بشكل أفضل، ومناقشة التحديات المحتملة وكيفية التغلب عليها.


References used
Grichnik Anthony, 2003, Artificial Intelligence, Strategy & Technolo- - gy Manager Caterpillar Inc
Holstvej.H.J., 2003, Visual Prolog version 6.1. Prolog Development Center A\S, Denmark
Kurfess Franz J, 2002, Knowledge-Based Systems, Computer Science Department Cal Poly
rate research

Read More

An expert system was developed to consider words' grammar case in Arabic phrases without diacritics. First, the system gets words' morphology and tags using Microsoft tool (ATK), then it depends on Arabic grammar to get words' grammar case in nominal phrases. The system gave a very good results as they compared with Arabic language expert.
The emergence of Multi-task learning (MTL)models in recent years has helped push thestate of the art in Natural Language Un-derstanding (NLU). We strongly believe thatmany NLU problems in Arabic are especiallypoised to reap the benefits of such model s. Tothis end we propose the Arabic Language Un-derstanding Evaluation Benchmark (ALUE),based on 8 carefully selected and previouslypublished tasks. For five of these, we providenew privately held evaluation datasets to en-sure the fairness and validity of our benchmark.We also provide a diagnostic dataset to helpresearchers probe the inner workings of theirmodels.Our initial experiments show thatMTL models outperform their singly trainedcounterparts on most tasks. But in order to en-tice participation from the wider community,we stick to publishing singly trained baselinesonly. Nonetheless, our analysis reveals thatthere is plenty of room for improvement inArabic NLU. We hope that ALUE will playa part in helping our community realize someof these improvements. Interested researchersare invited to submit their results to our online,and publicly accessible leaderboard.
تحتل الدراسات التي تتناول حوسبة اللغة العربية أهمية كبيرة نظراً للانتشار الواسع للغة العربية , و اخترنا في هذه الدراسة العمل على معالجة اللغة العربية من خلال نظام استرجاع معلومات للمستندات باللغة العربية , الفكرة الأساسية لهذا النظام هو تحليل المستن دات والنصوص العربية و إنشاء فهارس للمصطلحات الواردة فيها , ومن ثم استخلاص أشعة أوزان تعبر عن هذه المستندات من أجل المعالجة اللاحقة للاستعلام و المقارنة مع هذه الأشعة للحصول على المستندات الموافقة لهذا الاستعلام . من خلال عملية تجريد للمصطلحات الواردة في المستندات تم الحصول على كفاءة استرجاع أفضل , و تعرضنا للعديد من خوارزميات التجريد التي وصلت إليها الدراسات السابقة . و تأتي عملية عنقدة المستندات كإضافة هامة , حيث يتمكن المستخدم من معرفة المستندات المشابهة لنتيجة البحث و التي لها صلة بـالاستعلام المدخل . في التطبيق العملي , تم العمل على نظام استرجاع معلومات مكتبي , يقوم بقراءة نصوص ذات أنواع مختلفة و عرض النتائج مع العناقيد الموافقة لها .
Arabic and Ugaritic languages both belong to one linguistic origin, and are connected with similar relations that came to both from the Proto Semitic. The linguistic materials are precisely read from the Ugarit texts in order to extract all joint or non-joint features. The comparisons and their counters in Arabic languages will be in the light of the other Semitic languages such as Phoenician-Canaanite, Hebrew, Syriac, and Akkadian languages. And since the letter “M” is a linguistic sound, which plays in other languages ( rather than Arabic) the role that letter “N” plays grammatically in Arabic language like dual ,normal, phonetic alterations, and in structuring verbs, names, articles and pronouns. Such comparative linguistic study between the two languages is indicative dictionaric and phonetic comparisons, Moreover, it is a continuation of the old origins of phonetic structures of pronunciation in Arabic Language, a rejection of the indicative alternations and an extraction of the phonetic laws that control the linguistic materials which are under those linguistic comparisons.
Detecting offensive language on Twitter has many applications ranging from detecting/predicting bullying to measuring polarization. In this paper, we focus on building a large Arabic offensive tweet dataset. We introduce a method for building a datas et that is not biased by topic, dialect, or target. We produce the largest Arabic dataset to date with special tags for vulgarity and hate speech. We thoroughly analyze the dataset to determine which topics, dialects, and gender are most associated with offensive tweets and how Arabic speakers useoffensive language. Lastly, we conduct many experiments to produce strong results (F1 =83.2) on the dataset using SOTA techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا