الكشف عن اللغة الهجومية على Twitter لديها العديد من التطبيقات التي تتراوح من الكشف / التنبؤ بالتنبؤ لقياس الاستقطاب.في هذه الورقة، نركز على بناء مجموعة بيانات تغريدة عربية كبيرة.نقدم طريقة لبناء مجموعة بيانات غير متحيزة حسب الموضوع أو اللهجة أو الهدف.نحن ننتج أكبر مجموعة بيانات عربية حتى الآن مع علامات خاصة لخطاب الاداءات والكراهية.نحن نحلل تماما مجموعة البيانات لتحديد الموضوعات واللهجات والجنس الأكثر ترتبط أكثر من التغريدات الهجومية وكيفية استخدام المتحدثين باللغة العربية اللغة.أخيرا، نقوم بإجراء العديد من التجارب لإنتاج نتائج قوية (F1 = 83.2) على مجموعة البيانات باستخدام تقنيات SOTA.
Detecting offensive language on Twitter has many applications ranging from detecting/predicting bullying to measuring polarization. In this paper, we focus on building a large Arabic offensive tweet dataset. We introduce a method for building a dataset that is not biased by topic, dialect, or target. We produce the largest Arabic dataset to date with special tags for vulgarity and hate speech. We thoroughly analyze the dataset to determine which topics, dialects, and gender are most associated with offensive tweets and how Arabic speakers useoffensive language. Lastly, we conduct many experiments to produce strong results (F1 =83.2) on the dataset using SOTA techniques.
References used
https://aclanthology.org/
Sarcasm detection is one of the top challenging tasks in text classification, particularly for informal Arabic with high syntactic and semantic ambiguity. We propose two systems that harness knowledge from multiple tasks to improve the performance of
This paper describes the annotation process of an offensive language data set for Romanian on social media. To facilitate comparable multi-lingual research on offensive language, the annotation guidelines follow some of the recent annotation efforts
The 2020 US Elections have been, more than ever before, characterized by social media campaigns and mutual accusations. We investigate in this paper if this manifests also in online communication of the supporters of the candidates Biden and Trump, b
The objective of this work was the introduction of an effective approach based on the AraBERT language model for fighting Tweets COVID-19 Infodemic. It was arranged in the form of a two-step pipeline, where the first step involved a series of pre-pro
Offensive language detection and analysis has become a major area of research in Natural Language Processing. The freedom of participation in social media has exposed online users to posts designed to denigrate, insult or hurt them according to gende