مع التطور الكبير الحاصل في مجال الأجهزة المساحية، و ظهور أجيال مختلفة و متنوعة الدقة من أجهزة التيودوليت المستخدمة في قياس الإتجاهات و الزوايا الأفقية، أصبحت الحاجة ملحة لتحديث طرق تقييم و تحديد دقة القياسات المنفذة بهذه الأجهزة. و يتحقق هذا من خلال الأخذ بالإعتبار جميع العوامل الداخلية و الخارجية المؤثرة على نظام القياس، في هذا السياق قام فريق العمل بدراسة معادلة الخطأ المشهورة لقياس الإتجاهات الأفقية بالتيودوليت
( معادلة كولكورد ) و اختبارها باستعمال عدد من الأجهزة و الإشارات المساحية و ضمن قاعدة قياس خطية مكونة من خمسة أجزاء و بطول ( 250 m)، و خلص إلى ضرورة صياغة معادلة مطورة تأخذ بالإعتبار العوامل الداخلة أساساّ في معادلة كولكورد ( خطأ التمركز، خطأ التسديد، خطأ القراءة ) بالإضافة إلى نوعية الإشارة المرصودة و طول خط الرصد. تم اختبار هذه المعادلة عملياّ، فأثبت ذلك كفاءة جيدة في الوصول إلى قيم قريبة من القيم الفعلية لأخطاء القياس، و بذلك يمكن اعتمادها في تقدير قيم الأخطاء المتوسطة للإتجاهات الأفقية.
With substantial development in the field of surveying instruments, and the
emergence of various and different generations of Theodolites which are used to measure
horizontal directions and angles, it is urgent to develop the methods of assessing and
determining the accuracy of measurements using these instruments. This is achieved by
taking into consideration all the internal and external factors affecting the measurement
system. The research team studied the famous error equation (Colcord equation) of
horizontal directions and tested it using a several equipments of theodolites and targets on
a 250 m long, 5-sections base-line. The team concluded that there was a need to develop
Colcord equation by taking into consideration the factors involved mainly by Colcord
equation (positioning error, initial sitting error, reading error) in addition to the type of
target and the distance of the line of-sight. The proposed equation was tested in practice,
which proved that expected errors of measurements were close to their actual values. This
could be adopted to estimate the root mean square error (r. m. s. e.) of measurements of
horizontal directions.
Artificial intelligence review:
Research summary
تتناول هذه الدراسة التطور الكبير في مجال الأجهزة المساحية، وخاصة أجهزة التيودوليت المستخدمة في قياس الاتجاهات والزوايا الأفقية. مع ظهور أجيال مختلفة من هذه الأجهزة، أصبحت الحاجة ملحة لتحديث طرق تقييم وتحديد دقة القياسات. قام فريق العمل بدراسة معادلة الخطأ المشهورة لقياس الاتجاهات الأفقية بالتيودوليت (معادلة كولكورد) واختبارها باستخدام عدد من الأجهزة والإشارات المساحية ضمن قاعدة قياس بطول 250 متر. خلص الفريق إلى ضرورة صياغة معادلة مطورة تأخذ في الاعتبار العوامل الداخلة في معادلة كولكورد بالإضافة إلى نوعية الإشارة المرصودة وطول خط الرصد. تم اختبار المعادلة عملياً وأثبتت كفاءتها في الوصول إلى قيم قريبة من القيم الفعلية لأخطاء القياس، مما يجعلها قابلة للاعتماد في تقدير قيم الأخطاء المتوسطة للاتجاهات الأفقية.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم صيغة مطورة لمعادلة خطأ قياس الاتجاه الأفقي ويأخذ في الاعتبار العديد من العوامل المؤثرة على دقة القياس، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن توسيع نطاق التجارب لتشمل ظروف بيئية مختلفة لضمان شمولية النتائج. ثانياً، لم يتم التطرق بشكل كافٍ إلى تأثير العوامل الجوية المتغيرة على دقة القياس. ثالثاً، كان من الممكن تقديم تحليل أعمق للبيانات الإحصائية المستخدمة في التحقق من المعادلة المطورة. وأخيراً، يمكن تحسين العرض البصري للبيانات والنتائج لتكون أكثر وضوحاً وسهولة في الفهم للقراء غير المتخصصين.
Questions related to the research
-
ما هي العوامل الجديدة التي أخذتها المعادلة المطورة في الاعتبار مقارنة بمعادلة كولكورد الأصلية؟
أخذت المعادلة المطورة في الاعتبار نوعية الإشارة المرصودة وطول خط الرصد بالإضافة إلى العوامل الأساسية في معادلة كولكورد مثل خطأ التمركز، خطأ التسديد، وخطأ القراءة.
-
كيف تم اختبار كفاءة المعادلة المطورة عملياً؟
تم اختبار كفاءة المعادلة المطورة باستخدام عدد من أجهزة التيودوليت المختلفة والإشارات المساحية ضمن قاعدة قياس بطول 250 متر، وأثبتت المعادلة كفاءتها في الوصول إلى قيم قريبة من القيم الفعلية لأخطاء القياس.
-
ما هي النتائج الرئيسية التي توصل إليها البحث؟
توصل البحث إلى أن المعادلة المطورة فعالة في تقدير قيم الأخطاء المتوسطة للاتجاهات الأفقية، وأنها تعطي نتائج قريبة من القيم الفعلية للأخطاء، مما يرفع من مستوى دقة معالجة البيانات المساحية.
-
ما هي التوصيات التي قدمها الباحثون في نهاية الدراسة؟
أوصى الباحثون بمتابعة تطوير العلاقة المقترحة للوصول إلى صيغة أفضل، واستخدام مجموعات أجهزة قياس وإشارات رصد متنوعة لتعميم النتائج، والاستفادة من النتائج التي تم التوصل إليها لتحسين نماذج المعالجة الرياضية للشبكات الجيوديزية.
References used
Kissum,P. Surveying for Civil Engineers ,2nd ed. New York : McGraw Hill Book Company 1981
(Benton ,A. and Taetz , P. J. Elements of Plane Surveying . 1st ed.. New York : McGraw Hill Book Company ( 1991
Colcord , J.E. ( Error Analisys in Angulation Design ) . Proceeding of American Congress on Surveying and Mapping . San Francisco . 1971
In this paper, we present approximate solutions for the
Advection equation by finite differences method. In this method we
convert the nonlinear partial differential equation into a system of
nonlinear equations by some finite differences methods.
Research offers expanded version of the relationship to improve measurement
accuracy (provided by Otrenbski), which include correlated or free geodetic networks, with
correlated or incorrelated observations, which are processed according to the Lea
In this work, we have been obtained exact solutions for generalized Fitzhug-Nagumo equation with constant coefficients, by using the first integral method, and we have shown that this method is an efficient method to obtain exact solutions to this kind of nonlinear partial differential equations.
يعتبر تحديد منسوب المياه الجوفية من الأعمال المهمة للدراسات الجيوتكنيكية وخصوصاً إذا ما كان منسوب المياه في نطاق تنفيذ الأساسات حيث إن معظم المشاكل الفنية التي لها علاقة بالتربة تكون بسبب المياه الجوفية ،توجد عدة أجهزة لقياس مستوى الماء الجوفي وذلك ع
In this work, we have found exact traveling wave solutions for generalized Fitzhug-
Nagumo equation with arbitrary constant coefficients, by using the homogeneous balance
method, The obtained results shows that these solutions changes with the spec