Do you want to publish a course? Click here

A Software Solution for Nonlinear Advection Equation based on Finite Differences Methods

حل برمجي لمعادلة الحمل غير الخطية بالاعتماد على طرائق الفروق المنتهية

3082   3   144   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we present approximate solutions for the Advection equation by finite differences method. In this method we convert the nonlinear partial differential equation into a system of nonlinear equations by some finite differences methods. Then this system was solved by Newton's method. And we made a program implementing this algorithm and we checked the program using some examples, which have exact solutions, then we evaluate our results. As a conclusion we found that this method gives accurate results for Advection equation.


Artificial intelligence review:
Research summary
يقدم هذا البحث حلولاً تقريبية لمعادلة الحمل غير الخطية باستخدام طرائق الفروق المنتهية. يتم تحويل المعادلة إلى جملة معادلات غير خطية باستخدام هذه الطرائق، ثم تُحل باستخدام طريقة نيوتن المعتمدة على طريقة غاوس سيدل. تم تطوير خوارزمية توضح مراحل العمل بدقة، وبرمجتها باستخدام برنامج MATLAB. تم اختبار البرنامج على أمثلة لها حلول تحليلية معروفة، وتم حساب الخطأ لتقييم جودة الطريقة. أظهرت النتائج أن الطريقة تعطي حلولاً تقريبية جيدة لمعادلة الحمل. استخدمت الدراسة طريقتين رئيسيتين: طريقة كرانك-نيكلسون وطريقة الفروق المنتهية الضمنية اللوغارتمية، وأظهرت النتائج أن طريقة كرانك-نيكلسون تعطي نتائج أفضل قليلاً من الطريقة الأخرى.
Critical review
دراسة نقدية: يقدم البحث حلولاً تقريبية جيدة لمعادلة الحمل غير الخطية باستخدام طرائق الفروق المنتهية، ولكن هناك بعض النقاط التي يمكن تحسينها. أولاً، يمكن توسيع نطاق الأمثلة المستخدمة لاختبار الخوارزمية لتشمل حالات أكثر تعقيداً وتنوعاً. ثانياً، يمكن تحسين الشرح النظري لبعض الخطوات الرياضية المستخدمة في الحل لتكون أكثر وضوحاً للقراء غير المتخصصين. ثالثاً، يمكن مقارنة النتائج مع طرائق أخرى لحل المعادلات غير الخطية لتقديم تقييم شامل لجودة الطريقة المستخدمة. على الرغم من هذه النقاط، فإن البحث يعتبر إضافة قيمة في مجال الحلول العددية للمعادلات التفاضلية الجزئية غير الخطية.
Questions related to the research
  1. ما هي الطرق المستخدمة في البحث لحل معادلة الحمل غير الخطية؟

    استخدم البحث طريقتين رئيسيتين: طريقة كرانك-نيكلسون وطريقة الفروق المنتهية الضمنية اللوغارتمية.

  2. كيف تم تقييم جودة الحلول التقريبية المقدمة في البحث؟

    تم تقييم جودة الحلول عن طريق حساب الخطأ المرتكب ومقارنة النتائج مع الحلول التحليلية المعروفة.

  3. ما هي البرمجية المستخدمة لتنفيذ الخوارزمية المطورة في البحث؟

    تم استخدام برنامج MATLAB النسخة 2016a لتنفيذ الخوارزمية.

  4. ما هي النتائج الرئيسية التي توصل إليها البحث؟

    أظهرت النتائج أن الطريقتين المستخدمتين تعطيان حلولاً تقريبية جيدة، مع تفوق طفيف لطريقة كرانك-نيكلسون على طريقة الفروق المنتهية الضمنية اللوغارتمية.


References used
BAKODAH HO, 2016-A Comparative Study of Two Spatial Discretization Schemes for Advection equation. International Journal of Modern Nonlinear Theory and Application, 5, 59-66
CAUSON D M, MINGHAM C G,2010- Introductory Finite Difference Methods For PDES. Ventus Publishing
Courant, R., K. O. Fredrichs, and H. Lewy (1928), Uber die Differenzengleichungen der Mathematischen Physik, Math. Ann, vol.100, p.32, 1928
rate research

Read More

In this paper, we comparison of some approximate solutions for the Advection equation. This solutions built on numerical methods to obtain approximate others, depending on two different ways; the first is Finite Difference Methods, using Crank-Nic holson Method, and Implicit Logarithmic Finite Differences Method, and second is The Finite Elements Methods, throw modified cubic BSpline differential quadrature method using types for Basis functions (MCBDQM), (EMCB-DQM), and (Expo-MCB-DQM).
In this paper, we introduce an algorithm to solve the Advection equation by finite element method. In this method, we have chosen Three pattern of cubic B-Spline to approximate the nonlinear solution to convert the nonlinear PDE into a system of ODE, Then we solved this system equation by SSP-RK54 method, And we made a program implementing this algorithm and we checked the program using some examples, which have exact solutions, then we evaluate our results. As a conclusion we found that this method gives accurate results for advection equation.
We aim in this research to study the existence and uniqueness of strong solution for initial-boundary values problem for a semi-linear wave equation with the nonlinear boundary dissipation, by transforming it to a Cauchy problem with second order operator differential equations in Hilbert space. Therefore, we transform it, using Green's formula for a triple of Hilbert spaces.
In the introduction of this paper, we present a background on SDR, in section 2, we give a quick demonstration of main IS-95 features and ways to improve QoS in it. After a short recognition of key fading effects in section 3, we analyze in sectio n 4 the principle of Rake reception. In section 5, we use simulation results to effectively categorize variable number of fingers of the flexible Rake receiver upon user defined level of QoS, and we show the importance of such approach in effectively utilizing hardware resources dedicated for performing digital signal processing tasks, and in reducing power consumption required for these tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا