يقدم هذا البحث حلول تقريبية لمعادلة الحمل باستخدام الفروق المنتهية. تقوم هذه
الحلول على تحويل معادلة الحمل غير الخطية إلى جملة معادلات غير خطية بالاستفادة
من بعض طرائق الفروق المنتهية. و حل هذه الجملة باستخدام طريقة نيوتن يعتمد على
طريقة غاوس سيدل. و وضعت خوارزمية مفصلة تبين مراحل العمل بشكل دقيق. تم وضع
برنامج ينفذ هذه الخوارزمية على مجموعة من الأمثلة لها حلول تحليلية معلومة ثم حسبنا
الخطأ المرتكب لتقييم جودة الطريقة. و وجد أن هذه الطريقة تعطي حلولً تقريبية جيدة
لمسألة الحمل.
In this paper, we present approximate solutions for the
Advection equation by finite differences method. In this method we
convert the nonlinear partial differential equation into a system of
nonlinear equations by some finite differences methods. Then this
system was solved by Newton's method. And we made a program
implementing this algorithm and we checked the program using
some examples, which have exact solutions, then we evaluate our
results. As a conclusion we found that this method gives accurate
results for Advection equation.
Artificial intelligence review:
Research summary
يقدم هذا البحث حلولاً تقريبية لمعادلة الحمل غير الخطية باستخدام طرائق الفروق المنتهية. يتم تحويل المعادلة إلى جملة معادلات غير خطية باستخدام هذه الطرائق، ثم تُحل باستخدام طريقة نيوتن المعتمدة على طريقة غاوس سيدل. تم تطوير خوارزمية توضح مراحل العمل بدقة، وبرمجتها باستخدام برنامج MATLAB. تم اختبار البرنامج على أمثلة لها حلول تحليلية معروفة، وتم حساب الخطأ لتقييم جودة الطريقة. أظهرت النتائج أن الطريقة تعطي حلولاً تقريبية جيدة لمعادلة الحمل. استخدمت الدراسة طريقتين رئيسيتين: طريقة كرانك-نيكلسون وطريقة الفروق المنتهية الضمنية اللوغارتمية، وأظهرت النتائج أن طريقة كرانك-نيكلسون تعطي نتائج أفضل قليلاً من الطريقة الأخرى.
Critical review
دراسة نقدية: يقدم البحث حلولاً تقريبية جيدة لمعادلة الحمل غير الخطية باستخدام طرائق الفروق المنتهية، ولكن هناك بعض النقاط التي يمكن تحسينها. أولاً، يمكن توسيع نطاق الأمثلة المستخدمة لاختبار الخوارزمية لتشمل حالات أكثر تعقيداً وتنوعاً. ثانياً، يمكن تحسين الشرح النظري لبعض الخطوات الرياضية المستخدمة في الحل لتكون أكثر وضوحاً للقراء غير المتخصصين. ثالثاً، يمكن مقارنة النتائج مع طرائق أخرى لحل المعادلات غير الخطية لتقديم تقييم شامل لجودة الطريقة المستخدمة. على الرغم من هذه النقاط، فإن البحث يعتبر إضافة قيمة في مجال الحلول العددية للمعادلات التفاضلية الجزئية غير الخطية.
Questions related to the research
-
ما هي الطرق المستخدمة في البحث لحل معادلة الحمل غير الخطية؟
استخدم البحث طريقتين رئيسيتين: طريقة كرانك-نيكلسون وطريقة الفروق المنتهية الضمنية اللوغارتمية.
-
كيف تم تقييم جودة الحلول التقريبية المقدمة في البحث؟
تم تقييم جودة الحلول عن طريق حساب الخطأ المرتكب ومقارنة النتائج مع الحلول التحليلية المعروفة.
-
ما هي البرمجية المستخدمة لتنفيذ الخوارزمية المطورة في البحث؟
تم استخدام برنامج MATLAB النسخة 2016a لتنفيذ الخوارزمية.
-
ما هي النتائج الرئيسية التي توصل إليها البحث؟
أظهرت النتائج أن الطريقتين المستخدمتين تعطيان حلولاً تقريبية جيدة، مع تفوق طفيف لطريقة كرانك-نيكلسون على طريقة الفروق المنتهية الضمنية اللوغارتمية.
References used
BAKODAH HO, 2016-A Comparative Study of Two Spatial Discretization Schemes for Advection equation. International Journal of Modern Nonlinear Theory and Application, 5, 59-66
CAUSON D M, MINGHAM C G,2010- Introductory Finite Difference Methods For PDES. Ventus Publishing
Courant, R., K. O. Fredrichs, and H. Lewy (1928), Uber die Differenzengleichungen der Mathematischen Physik, Math. Ann, vol.100, p.32, 1928
In this paper, we comparison of some approximate solutions
for the Advection equation. This solutions built on numerical
methods to obtain approximate others, depending on two different
ways; the first is Finite Difference Methods, using Crank-Nic
In this paper, we introduce an algorithm to solve the
Advection equation by finite element method. In this method, we
have chosen Three pattern of cubic B-Spline to approximate the
nonlinear solution to convert the nonlinear PDE into a system of
We aim in this research to study the existence and uniqueness of strong solution for
initial-boundary values problem for a semi-linear wave equation with the nonlinear
boundary dissipation, by transforming it to a Cauchy problem with second order operator
differential equations in Hilbert space. Therefore, we transform it, using Green's formula
for a triple of Hilbert spaces.
In the introduction of this paper, we present a background on SDR, in
section 2, we give a quick demonstration of main IS-95 features and ways to
improve QoS in it. After a short recognition of key fading effects in section
3, we analyze in sectio
This research studies solving the linear second order difference
equation with variable coefficients.
For solving this equation we use two theorems and prove these theorems as well
as we use some definitions and main concepts .