Do you want to publish a course? Click here

Finding Exact Solutions for Generalized Fitzhug- Nagumo Equation with Constant Coefficients

إيجاد حلول تامة لمعادلة Fitzhug-Nagumo المعممة ذات الأمثال الثابتة

1296   0   21   0 ( 0 )
 Publication date 2014
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this work, we have been obtained exact solutions for generalized Fitzhug-Nagumo equation with constant coefficients, by using the first integral method, and we have shown that this method is an efficient method to obtain exact solutions to this kind of nonlinear partial differential equations.

References used
R. FITZHUGH, Impulse and physiological states in models of nerve membrane, Biophys. J. 1 (1961) 445–466
J.S. NAGUMO, S. ARIMOTO, S. YOSHIZAWA, An active pulse transmission line simulating nerve axon, Proc. IRE 50 (1962) 2061–2071
S. ABBASBANDY, Soliton solutions for the Fitzhugh–Nagumo equation with the homotopy analysis method, Appl. Math. Model. 32 (2008) 2706–2714
H.A. ABDUSALAM, Analytic and approximate solutions for Nagumo telegraph reaction diffusion equation, Appl. Math. Comput. 157 (2004) 515–522
D.G. ARONSON, H.F. WEINBERGER, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. 30 (1978) 33–76
rate research

Read More

The goal of this work is finding exact solitary wave solutions to generalized Fitzhug-Nagumo equation with constant coefficients, by using the exp-function method, where we have illustrated graphically one of them, the obtained results, with aid of s ymbolic programs as Maple and Mathematica, show that this method is simple, direct and very efficient for solving this kind of nonlinear PDEs, and it requires no advanced mathematical knowledge, so it is convenient to scientists and engineering.
In this work, we have found exact traveling wave solutions for generalized Fitzhug- Nagumo equation with arbitrary constant coefficients, by using the homogeneous balance method, The obtained results shows that these solutions changes with the spec ials solution of Ricati ODE with arbitrary constant coefficients , and shows that this method is simple, direct and very efficient for solving this kind of nonlinear PDEs, It can be applied to nonlinear PDEs which frequently arise in engineering sciences, mathematical physics and other scientific real-time applications fields.
In this work, we have been found explicit exact soliton wave solutions for Zeldovich equation with time-dependent coefficients, by using the tanh function method with nonlinear wave transform, in general case. The results obtained shows that these exact solutions are affected the nonlinear nature of the wave variable, it is also shown that this method is effective and appropriate for solving this kind of nonlinear PDEs, which are models of many applied problems in physics, chemistry and population evolution.
This research aims to find the necessary conditions for the existence of the dark soliton solution to the Vakhnenko-Parkes equation with time dependent coefficients and with power law nonlinearity by using the solitary wave ansatz method. The value o f the power law nonlinearity parameter is determined. The results show that the used method is efficient to obtain this kind of solutions for the nonlinear partial differential equations.
In this paper, we comparison of some approximate solutions for the Advection equation. This solutions built on numerical methods to obtain approximate others, depending on two different ways; the first is Finite Difference Methods, using Crank-Nic holson Method, and Implicit Logarithmic Finite Differences Method, and second is The Finite Elements Methods, throw modified cubic BSpline differential quadrature method using types for Basis functions (MCBDQM), (EMCB-DQM), and (Expo-MCB-DQM).

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا