Do you want to publish a course? Click here

Appearance based and Gesture Independent Model for Natural Human Hand Detection and Tracking

نموذج معتمد على المظهر و مستقل عن الإيماءات لاكتشاف اليد البشرية المجردة و ملاحقتها

2116   1   17   0 ( 0 )
 Publication date 2011
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Many researchers work on enhancement of Human Computer Interaction methods and try to make it more natural and intuitive. This includes researches in: understanding human languages, gestures recognition and brain signals recognition. But the heavy use of hands in human everyday life makes hand recognition and tracking researches very important. In this paper, we present a novel method to recognize and track a human hand moving in front of digital camera in an unknown environment without any constraints on fingers positions or hand gesture and with no need to wear any additional devices like gloves or markers. Our method can distinguish between hand and other moving objects especially faces, by applying some proposed criteria to determine which object is representing the hand. A practical study is performed to evaluate the performance of the proposed method. Hand interactive virtual TV is made as a realistic application to report users experiences. Results show that our proposed method can recognize human hand at real-time with 99% accuracy rate in normal indoors light.


Artificial intelligence review:
Research summary
يقدم البحث نموذجًا جديدًا لتعرّف اليد البشرية المجردة وملاحقتها باستخدام كاميرا رقمية عادية، دون الحاجة إلى ارتداء قفازات أو معلمات إضافية. يعتمد النموذج على معالجة الصور الفيديوية لتحديد نقاط الفيديو المتحركة من لون الجلد البشري وتطبيق مجموعة من المعايير المقترحة لتعرف الجسم الممثل لليد. تم إجراء دراسة عملية لتقييم الأداء وتصميم تطبيق عملي كتلفاز تفاعلي يمكن التحكم فيه باستخدام اليد المجردة. أظهرت النتائج إمكانية تعرّف اليد بدقة تقارب 99% في ظروف الإضاءة الطبيعية. يتألف النظام المقترح من مرحلتين أساسيتين: مرحلة التهيئة ومرحلة الملاحقة. تقوم مرحلة التهيئة بتحديد منطقة اليد البشرية ضمن صورة الدخل عن طريق إيجاد النقاط القريبة من لون الجلد ومقاطعتها مع النقاط المتحركة، بينما تقوم مرحلة الملاحقة بمتابعة اليد خلال الصور التالية. تم استخدام مجموعة من المعايير المستوحاة من شكل اليد البشرية لتحديد المنطقة الممثلة لليد، مثل الشكل الإهليلجي ومناطق خلل التحدب واللون الموحد. تم تقييم النظام باستخدام مجموعة من خوارزميات التصنيف مثل الشبكة العصبية والشجرة القرارية والانحدار اللوجستي، وحققت الشبكة العصبية أعلى دقة بنسبة تزيد على 99%. أظهرت التجارب العملية تفضيل المستخدمين للتفاعل باستخدام اليد المجردة على جهاز التحكم التقليدي من حيث متعة الاستخدام، على الرغم من انخفاض دقتها بشكل طفيف مقارنة بجهاز التحكم.
Critical review
دراسة نقدية: يعتبر هذا البحث خطوة مهمة نحو تحسين التفاعل بين الإنسان والآلة باستخدام اليد المجردة. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، على الرغم من أن النظام يعمل بدقة عالية في ظروف الإضاءة الطبيعية، إلا أن الأداء قد يتأثر في ظروف الإضاءة المتغيرة أو الضعيفة. ثانياً، قد يكون من المفيد توسيع نطاق الدراسة لتشمل مجموعة أكبر من المستخدمين من مختلف الأعمار والخلفيات الثقافية لتقييم مدى فعالية النظام في ظروف متنوعة. ثالثاً، يمكن تحسين النموذج ليكون أكثر تكيفًا مع التغيرات في لون الجلد بين الأفراد المختلفين. وأخيراً، يمكن أن يكون هناك اهتمام أكبر بتقليل تكلفة العمليات الحسابية لجعل النظام أكثر كفاءة وملاءمة للاستخدام في الزمن الحقيقي.
Questions related to the research
  1. ما هي المراحل الأساسية التي يتألف منها النظام المقترح لتعرّف اليد البشرية؟

    يتألف النظام من مرحلتين أساسيتين: مرحلة التهيئة ومرحلة الملاحقة. تقوم مرحلة التهيئة بتحديد منطقة اليد البشرية ضمن صورة الدخل، بينما تقوم مرحلة الملاحقة بمتابعة اليد خلال الصور التالية.

  2. ما هي المعايير المستخدمة لتحديد منطقة اليد البشرية في النظام المقترح؟

    تم استخدام مجموعة من المعايير المستوحاة من شكل اليد البشرية، مثل الشكل الإهليلجي، مناطق خلل التحدب، واللون الموحد.

  3. ما هي دقة النظام المقترح في تعرّف اليد البشرية في ظروف الإضاءة الطبيعية؟

    أظهرت النتائج أن النظام المقترح يمكنه تعرّف اليد بدقة تقارب 99% في ظروف الإضاءة الطبيعية.

  4. ما هي خوارزميات التصنيف التي تم استخدامها في تقييم النظام، وأيها حققت أعلى دقة؟

    تم استخدام مجموعة من خوارزميات التصنيف مثل الشبكة العصبية، الشجرة القرارية، والانحدار اللوجستي. وحققت الشبكة العصبية أعلى دقة بنسبة تزيد على 99%.


References used
J. d. R. Millán, et al., "Brain-actuated interaction," Artificial intelligence, vol. 159, pp. 241-259, 2004
J. M. Rehg and T. Kanade, "Visual Tracking of High DOF Articulated Structures: an Application to Human Hand Tracking," presented at the Proceedings of the Third European Conference-Volume II on Computer Vision - Volume II, 1994
K. Dorfmuller-Ulhaas and D. Schmalstieg, "Finger tracking for interaction in augmented environments," in Augmented Reality, 2001. Proceedings. IEEE and ACM International Symposium on, 2001, pp. 55-64
rate research

Read More

Within the last few years, the number of Arabic internet users and Arabic online content is in exponential growth. Dealing with Arabic datasets and the usage of non-explicit sentences to express an opinion are considered to be the major challenges in the field of natural language processing. Hence, sarcasm and sentiment analysis has gained a major interest from the research community, especially in this language. Automatic sarcasm detection and sentiment analysis can be applied using three approaches, namely supervised, unsupervised and hybrid approach. In this paper, a model based on a supervised machine learning algorithm called Support Vector Machine (SVM) has been used for this process. The proposed model has been evaluated using ArSarcasm-v2 dataset. The performance of the proposed model has been compared with other models submitted to sentiment analysis and sarcasm detection shared task.
As NLP systems become better at detecting opinions and beliefs from text, it is important to ensure not only that models are accurate but also that they arrive at their predictions in ways that align with human reasoning. In this work, we present a m ethod for imparting human-like rationalization to a stance detection model using crowdsourced annotations on a small fraction of the training data. We show that in a data-scarce setting, our approach can improve the reasoning of a state-of-the-art classifier---particularly for inputs containing challenging phenomena such as sarcasm---at no cost in predictive performance. Furthermore, we demonstrate that attention weights surpass a leading attribution method in providing faithful explanations of our model's predictions, thus serving as a computationally cheap and reliable source of attributions for our model.
Fatigue is one ofthemostimportant and common side effectamong cancer patient under chemotherapy. Objective:the study aimed is to study the effect back, hand and foot massage on fatigue levelto cancer patient under chemotherapy.Material and method:t he study was conducted of (75) patients were adult male divided on five groups (back massage, hand massage, foot massage,[back, hand and foot massage] and control group) atchemotherapy unit, Tishreen University Hospital, and all of them are under chemotherapy. Data collected by the personal information form, the fatigue severity scale was used.Results:This study showed that back, hand and foot massage together was the most effective in reduce fatigue levels and recommended about importance of massage for patients under chemotherapy.
In this work, we are proposing a new model for knowledge discovery in database (KDD) named "SCRUM-BI". It based on SCRUM agile methodology to enhance the way of building Business Intelligence and Data Mining applications. This model characterized as more adaptive to the changing requirements, priorities and rapidly evolving business environments. SCRUM-BI Also improves and enhances the process of knowledge obtaining and sharing, which contributes to support strategic decision-making. The model was validated using a case study on the telecommunications sector in Syria.
Multi-hop relation detection in Knowledge Base Question Answering (KBQA) aims at retrieving the relation path starting from the topic entity to the answer node based on a given question, where the relation path may comprise multiple relations. Most o f the existing methods treat it as a single-label learning problem while ignoring the fact that for some complex questions, there exist multiple correct relation paths in knowledge bases. Therefore, in this paper, multi-hop relation detection is considered as a multi-label learning problem. However, performing multi-label multi-hop relation detection is challenging since the numbers of both the labels and the hops are unknown. To tackle this challenge, multi-label multi-hop relation detection is formulated as a sequence generation task. A relation-aware sequence relation generation model is proposed to solve the problem in an end-to-end manner. Experimental results show the effectiveness of the proposed method for relation detection and KBQA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا