Do you want to publish a course? Click here

Human Rationales as Attribution Priors for Explainable Stance Detection

المناولة البشرية كعظمون من إسناد للكشف عن الموقف

292   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

As NLP systems become better at detecting opinions and beliefs from text, it is important to ensure not only that models are accurate but also that they arrive at their predictions in ways that align with human reasoning. In this work, we present a method for imparting human-like rationalization to a stance detection model using crowdsourced annotations on a small fraction of the training data. We show that in a data-scarce setting, our approach can improve the reasoning of a state-of-the-art classifier---particularly for inputs containing challenging phenomena such as sarcasm---at no cost in predictive performance. Furthermore, we demonstrate that attention weights surpass a leading attribution method in providing faithful explanations of our model's predictions, thus serving as a computationally cheap and reliable source of attributions for our model.



References used
https://aclanthology.org/
rate research

Read More

The goal of stance detection is to identify whether the author of a text is in favor of, neutral or against a specific target. Despite substantial progress on this task, one of the remaining challenges is the scarcity of annotations. Data augmentatio n is commonly used to address annotation scarcity by generating more training samples. However, the augmented sentences that are generated by existing methods are either less diversified or inconsistent with the given target and stance label. In this paper, we formulate the data augmentation of stance detection as a conditional masked language modeling task and augment the dataset by predicting the masked word conditioned on both its context and the auxiliary sentence that contains target and label information. Moreover, we propose another simple yet effective method that generates target-aware sentence by replacing a target mention with the other. Experimental results show that our proposed methods significantly outperforms previous augmentation methods on 11 targets.
Detecting stance on Twitter is especially challenging because of the short length of each tweet, the continuous coinage of new terminology and hashtags, and the deviation of sentence structure from standard prose. Fine-tuned language models using lar ge-scale in-domain data have been shown to be the new state-of-the-art for many NLP tasks, including stance detection. In this paper, we propose a novel BERT-based fine-tuning method that enhances the masked language model for stance detection. Instead of random token masking, we propose using a weighted log-odds-ratio to identify words with high stance distinguishability and then model an attention mechanism that focuses on these words. We show that our proposed approach outperforms the state of the art for stance detection on Twitter data about the 2020 US Presidential election.
The widespread use of the Internet and the rapid dissemination of information poses the challenge of identifying the veracity of its content. Stance detection, which is the task of predicting the position of a text in regard to a specific target (e.g . claim or debate question), has been used to determine the veracity of information in tasks such as rumor classification and fake news detection. While most of the work and available datasets for stance detection address short texts snippets extracted from textual dialogues, social media platforms, or news headlines with a strong focus on the English language, there is a lack of resources targeting long texts in other languages. Our contribution in this paper is twofold. First, we present a German dataset of debate questions and news articles that is manually annotated for stance and emotion detection. Second, we leverage the dataset to tackle the supervised task of classifying the stance of a news article with regards to a debate question and provide baseline models as a reference for future work on stance detection in German news articles.
The problem of detecting psychological stress in online posts, and more broadly, of detecting people in distress or in need of help, is a sensitive application for which the ability to interpret models is vital. Here, we present work exploring the us e of a semantically related task, emotion detection, for equally competent but more explainable and human-like psychological stress detection as compared to a black-box model. In particular, we explore the use of multi-task learning as well as emotion-based language model fine-tuning. With our emotion-infused models, we see comparable results to state-of-the-art BERT. Our analysis of the words used for prediction show that our emotion-infused models mirror psychological components of stress.
Stance detection (SD) entails classifying the sentiment of a text towards a given target, and is a relevant sub-task for opinion mining and social media analysis. Recent works have explored knowledge infusion supplementing the linguistic competence a nd latent knowledge of large pre-trained language models with structured knowledge graphs (KGs), yet few works have applied such methods to the SD task. In this work, we first perform stance-relevant knowledge probing on Transformers-based pre-trained models in a zero-shot setting, showing these models' latent real-world knowledge about SD targets and their sensitivity to context. We then train and evaluate new knowledge-enriched stance detection models on two Twitter stance datasets, achieving state-of-the-art performance on both.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا