نقدم في هذا العمل نموذج جديد لاكتشاف المعرفة في البيانات " SCRUM-BI " يعتمد المنهجية الرّشيقة
سكروم، للمساعدة في بناء تطبيقات ذكاء الأعمال ( BI ) و التنقيب في البيانات. يتميز هذا النموذج بأنّه أكثر تكيّفاً مع التغييرات في المتطلبات و الأولويات من جهة، و التطورات المتسارعة في بيئات العمل من جهة أخرى، كما يحسّن و يعزز عملية الحصول على المعرفة و مشاركتها، مما يسهم في دعم عملية اتخاذ القرارات الاستراتيجية.
جرى اختبار و تقييم النموذج باستخدام حالة دراسيّة على قطاع شركات الاتصالات في سوريا.
In this work, we are proposing a new model for knowledge discovery in database (KDD) named "SCRUM-BI". It based on SCRUM agile methodology to enhance the way of building Business Intelligence and Data Mining applications. This model characterized as more adaptive to the changing requirements, priorities and rapidly evolving business environments. SCRUM-BI Also improves and enhances the process of knowledge obtaining and sharing, which contributes to support strategic decision-making.
The model was validated using a case study on the telecommunications sector in Syria.
References used
G. P. Shapiro, C. Matheus and W. Frawley, "Knowledge Discovery in Databases - An Overview," AI Magazine, pp. 57-70, Septemper 1992
U. Fayyad, G. P. Shapiro and P. Smyth, Advances in knowledge discovery and data mining, Menlo Park, CA: American Association for Artificial Intelligence, 1996
G. P. Shapiro, "Analytics and data mining: The key to successful CRM," in Knowledge Discovery and Data Mining Conference, Boston, MA, 2000
Knowledge graph embedding, representing entities and relations in the knowledge graphs with high-dimensional vectors, has made significant progress in link prediction. More researchers have explored the representational capabilities of models in rece
We present on-going work of evaluating the, to our knowledge, first large generative language model trained to converse in Swedish, using data from the online discussion forum Flashback. We conduct a human evaluation pilot study that indicates the mo
Multi-hop relation detection in Knowledge Base Question Answering (KBQA) aims at retrieving the relation path starting from the topic entity to the answer node based on a given question, where the relation path may comprise multiple relations. Most o
Inspired by mutual information (MI) based feature selection in SVMs and logistic regression, in this paper, we propose MI-based layer-wise pruning: for each layer of a multi-layer neural network, neurons with higher values of MI with respect to prese
This paper presents the preliminary results of an ongoing project that analyzes the growing body of scientific research published around the COVID-19 pandemic. In this research, a general-purpose semantic model is used to double annotate a batch of 5