Do you want to publish a course? Click here

An Enhanced Method for Recognizing Face on the Basis of Facial Expressions and Skin Detection

طريقة مُدعمة للتعرف على الوجه مبنية على التعابير الوجهية و اكتشاف الجلد

1247   0   51   0 ( 0 )
 Publication date 2014
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents a new method to recognize human face in different emotional situations. This method is based on proposed algorithm SD.R&C to discover skin and expression classification.


Artificial intelligence review:
Research summary
يعرض هذا البحث طريقة جديدة للتعرف على الوجه في حالات انفعالية مختلفة باستخدام خوارزمية مقترحة SD.R&C لاكتشاف الجلد وتصنيف التعبيرات الوجهية. تعتمد الخوارزمية على تنظيم ألوان الصورة واستخلاص المناطق الجلدية لتحديد الوجه بدقة. يتم تصنيف نوع التعبير باستخدام شبكة عصبونية مدربة على مجموعة من الميزات المستخلصة من الوجه. تم بناء ثمانية شبكات عصبونية للتعرف على الوجه في ثمانية حالات انفعالية مختلفة مثل الغضب والفرح والحزن والخوف والدهشة. تم اختبار الخوارزمية على قاعدة بيانات MUG وصور أخرى، وحققت معدلات تعرف متفاوتة بين الحالات المختلفة، حيث بلغ معدل التعرف على الوجه في حالة الغضب 76.24% وفي حالة الاشمئزاز 83.65%، بينما كان في حالة الاندهاش 93.58%. تتميز الطريقة بمرونتها وقدرتها على التعامل مع أنواع مختلفة من الصور دون الحاجة لأجهزة معقدة ومرتفعة السعر.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة في مجال التعرف على الوجه باستخدام التعابير الوجهية واكتشاف الجلد، ولكن هناك بعض النقاط التي يمكن تحسينها. أولاً، على الرغم من أن الخوارزمية تظهر نتائج جيدة في بعض الحالات الانفعالية، إلا أن معدلات التعرف في حالات أخرى مثل الخوف والحزن لا تزال منخفضة نسبياً. يمكن تحسين هذه المعدلات من خلال تحسين عملية استخلاص الميزات أو تدريب الشبكات العصبونية على مجموعة بيانات أكبر وأكثر تنوعاً. ثانياً، لم يتم التطرق إلى كيفية تعامل الخوارزمية مع التداخلات الخارجية مثل الإضاءة المتغيرة أو وجود عناصر غير مرغوب فيها في الصورة. يمكن أن تكون هذه العوامل مؤثرة بشكل كبير على دقة التعرف. أخيراً، يمكن أن يكون هناك مجال لتحسين الأداء من خلال استخدام تقنيات حديثة مثل التعلم العميق أو الشبكات العصبونية التلافيفية.
Questions related to the research
  1. ما هي الخوارزمية المستخدمة في هذا البحث لاكتشاف الجلد وتحديد الوجه؟

    الخوارزمية المستخدمة هي SD.R&C، والتي تعتمد على تنظيم ألوان الصورة واستخلاص المناطق الجلدية لتحديد الوجه بدقة.

  2. كم عدد الشبكات العصبونية التي تم بناؤها للتعرف على الوجه في حالات انفعالية مختلفة؟

    تم بناء ثمانية شبكات عصبونية للتعرف على الوجه في ثمانية حالات انفعالية مختلفة مثل الغضب والفرح والحزن والخوف والدهشة.

  3. ما هو معدل التعرف على الوجه في حالة الاندهاش وفقاً للبحث؟

    بلغ معدل التعرف على الوجه في حالة الاندهاش 93.58%.

  4. ما هي قاعدة البيانات الأساسية المستخدمة لتدريب واختبار الخوارزمية؟

    قاعدة البيانات الأساسية المستخدمة هي قاعدة بيانات MUG بالإضافة إلى مجموعة من الصور التي تم التقاطها من قبل الباحثين.


References used
AIFANTI N.; PAPACHRISTOU C.; DELOPOULOS A., 2010-The MUG Facial Expression Database. Proc. 11th Int. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), Desenzano, Italy
ALIAA A., YOUSSIF A., WESAM A., 2011- Automatic Facial Expression Recognition System Based on Geometric and Appearance Feature, Computer and Information Science, Published by Canadian Center of Science and Education, Vol. 4, No. 2, Pages 115-124
Calvo A., Ruiz F., Rurainsky J., Eisert P., 2008- 2D-3D Mixed Face Recognition Schemes, I-Tech, Vienna, Austria, pp. 125-148
rate research

Read More

The research presents a design for an automated checking system for students. The system takes a picture of the student, then it extracts his/her basic facial features. The network was trained using the reverse spreading algorithm. If a training da tabase is generated for each student consisting of 15 training samples contained of the necessary facial expressions to identify the student for one time at the beginning of the semester, then the neural network will be trained on students database to obtain a trained neural network able to identify the students of each category depending on their physical appearance. That will result in knowing who attends and who does not attend the session. The system designed for this purpose was supplied with the trained network. The system provides the possibility of automated checking for students according to the content of the study giving the alarm in case of the existence of the picture of a student who does not belong to the same group.
The amount of digital images that are produced in hospitals is increasing rapidly. Effective medical images can play an important role in aiding in diagnosis and treatment, they can also be useful in the education domain for healthcare students by explaining with these images will help them in their studies, new trends for image retrieval using automatic image classification has been investigated for the past few years. Medical image Classification can play an important role in diagnostic and teaching purposes in medicine. For these purposes different imaging modalities are used. There are many classifications created for medical images using both grey-scale and color medical images. In this paper, different algorithms in every step involved in medical image processing have been studied. One way is the algorithms of preprocessing step such as Median filter [1], Histogram equalization (HE) [2], Dynamic histogram equalization (DHE), and Contrast Limited Adaptive Histogram Equalization (CLAHE). Second way is the Feature Selection and Extraction step [3,4], such as Gray Level Co-occurrence Matrix(GLCM). Third way is the classification techniques step, which is divided into three ways in this paper, first one is texture classification techniques, second one is neural network classification techniques, and the third one is K-Nearest Neighbor classification techniques. In this paper, we have use MRI brain image to determine the area of tumor in brain. The steps started by preprocessing operation to the image before inputting it to algorithm. The image was converted to gray scale, later on remove film artifact using special algorithm, and then remove the Skull portions from the image without effect on white and gray matter of the brain using another algorithm, After that the image enhanced using optimized median filter algorithm and remove Impurities that produced from first and second steps.
On Wikipedia, an online crowdsourced encyclopedia, volunteers enforce the encyclopedia's editorial policies. Wikipedia's policy on maintaining a neutral point of view has inspired recent research on bias detection, including weasel words'' and hedges ''. Yet to date, little work has been done on identifying puffery,'' phrases that are overly positive without a verifiable source. We demonstrate that collecting training data for this task requires some care, and construct a dataset by combining Wikipedia editorial annotations and information retrieval techniques. We compare several approaches to predicting puffery, and achieve 0.963 f1 score by incorporating citation features into a RoBERTa model. Finally, we demonstrate how to integrate our model with Wikipedia's public infrastructure to give back to the Wikipedia editor community.
A group of 200 subjects was divided into five groups consisting of dentist, students of the last year predoctoral dental, students of pediatric dentistry, students of dental assistants, and pediatric dentists. The groups were surveyed in order to elicit their responses to a series of ten simple line-drawn faces. Each person was asked in a questionnaire to medicate on a five-point scale the degree to which an adjective was appropriate or inappropriate for each simple line-drawn face. Twenty adjectives were repeated for the ten different faces. Means and standard deviations were calculated for all responses. Results indicate that each face yielded a unique set of appropriate adjectives as perceived by all subjects. Beyond this basic agreement, however, group differences were found in the selection of other appropriate adjectives. Based upon a random subset of responses, discriminant analysis correctly assigned group membership for 96% of the subjects. It was also found that eight of the ten faces discriminated among the groups with correct reclassification ranging from 88% to 96%.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا