يعرض هذا البحث طريقة جديدة للتعرف على الوجه في حالات انفعالية مختلفة. تعتمد هذه الطريقة على خوارزميتنا المقترحة SD.R&C لاكتشاف الجلد البشري و تحديد الوجه, و على تصنيف نوع التعبير.
This paper presents a new method to recognize human face in different emotional situations. This method is based on proposed algorithm SD.R&C to discover skin and expression classification.
Artificial intelligence review:
Research summary
يعرض هذا البحث طريقة جديدة للتعرف على الوجه في حالات انفعالية مختلفة باستخدام خوارزمية مقترحة SD.R&C لاكتشاف الجلد وتصنيف التعبيرات الوجهية. تعتمد الخوارزمية على تنظيم ألوان الصورة واستخلاص المناطق الجلدية لتحديد الوجه بدقة. يتم تصنيف نوع التعبير باستخدام شبكة عصبونية مدربة على مجموعة من الميزات المستخلصة من الوجه. تم بناء ثمانية شبكات عصبونية للتعرف على الوجه في ثمانية حالات انفعالية مختلفة مثل الغضب والفرح والحزن والخوف والدهشة. تم اختبار الخوارزمية على قاعدة بيانات MUG وصور أخرى، وحققت معدلات تعرف متفاوتة بين الحالات المختلفة، حيث بلغ معدل التعرف على الوجه في حالة الغضب 76.24% وفي حالة الاشمئزاز 83.65%، بينما كان في حالة الاندهاش 93.58%. تتميز الطريقة بمرونتها وقدرتها على التعامل مع أنواع مختلفة من الصور دون الحاجة لأجهزة معقدة ومرتفعة السعر.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة في مجال التعرف على الوجه باستخدام التعابير الوجهية واكتشاف الجلد، ولكن هناك بعض النقاط التي يمكن تحسينها. أولاً، على الرغم من أن الخوارزمية تظهر نتائج جيدة في بعض الحالات الانفعالية، إلا أن معدلات التعرف في حالات أخرى مثل الخوف والحزن لا تزال منخفضة نسبياً. يمكن تحسين هذه المعدلات من خلال تحسين عملية استخلاص الميزات أو تدريب الشبكات العصبونية على مجموعة بيانات أكبر وأكثر تنوعاً. ثانياً، لم يتم التطرق إلى كيفية تعامل الخوارزمية مع التداخلات الخارجية مثل الإضاءة المتغيرة أو وجود عناصر غير مرغوب فيها في الصورة. يمكن أن تكون هذه العوامل مؤثرة بشكل كبير على دقة التعرف. أخيراً، يمكن أن يكون هناك مجال لتحسين الأداء من خلال استخدام تقنيات حديثة مثل التعلم العميق أو الشبكات العصبونية التلافيفية.
Questions related to the research
-
ما هي الخوارزمية المستخدمة في هذا البحث لاكتشاف الجلد وتحديد الوجه؟
الخوارزمية المستخدمة هي SD.R&C، والتي تعتمد على تنظيم ألوان الصورة واستخلاص المناطق الجلدية لتحديد الوجه بدقة.
-
كم عدد الشبكات العصبونية التي تم بناؤها للتعرف على الوجه في حالات انفعالية مختلفة؟
تم بناء ثمانية شبكات عصبونية للتعرف على الوجه في ثمانية حالات انفعالية مختلفة مثل الغضب والفرح والحزن والخوف والدهشة.
-
ما هو معدل التعرف على الوجه في حالة الاندهاش وفقاً للبحث؟
بلغ معدل التعرف على الوجه في حالة الاندهاش 93.58%.
-
ما هي قاعدة البيانات الأساسية المستخدمة لتدريب واختبار الخوارزمية؟
قاعدة البيانات الأساسية المستخدمة هي قاعدة بيانات MUG بالإضافة إلى مجموعة من الصور التي تم التقاطها من قبل الباحثين.
References used
AIFANTI N.; PAPACHRISTOU C.; DELOPOULOS A., 2010-The MUG Facial Expression Database. Proc. 11th Int. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), Desenzano, Italy
ALIAA A., YOUSSIF A., WESAM A., 2011- Automatic Facial Expression Recognition System Based on Geometric and Appearance Feature, Computer and Information Science, Published by Canadian Center of Science and Education, Vol. 4, No. 2, Pages 115-124
Calvo A., Ruiz F., Rurainsky J., Eisert P., 2008- 2D-3D Mixed Face Recognition Schemes, I-Tech, Vienna, Austria, pp. 125-148
The aim of the work is to improve the performance of the WLD
descriptor using Gabor filters in a preprocessing stage. The
performance of the improved descriptor will be compared with the
performance of the LBP descriptor(a widely used descriptor i
The research presents a design for an automated checking system for students. The
system takes a picture of the student, then it extracts his/her basic facial features. The
network was trained using the reverse spreading algorithm. If a training da
The amount of digital images that are produced in hospitals is increasing rapidly. Effective
medical images can play an important role in aiding in diagnosis and treatment, they can
also be useful in the education domain for healthcare students by
On Wikipedia, an online crowdsourced encyclopedia, volunteers enforce the encyclopedia's editorial policies. Wikipedia's policy on maintaining a neutral point of view has inspired recent research on bias detection, including weasel words'' and hedges
A group of 200 subjects was divided into five groups consisting of
dentist, students of the last year predoctoral dental, students of
pediatric dentistry, students of dental assistants, and pediatric
dentists. The groups were surveyed in order to