يهدف هذا البحثإلى تحسين أداء الواصف WLD من خلال استخدام مرشحات غيبر في عملية المعالجة الأولية و مقارنة أداء هذه النتائج مع أداء الواصف LBP المستخدم بشكل واسع في عمليات التعرف على تعابير الوجه, حيث تتم هذه المقارنة من أجل النظام الخبير SVM المستخدم بشكل واسع أيضا في هذا المجال بالإضافة إلى نظامين خبيرين مقترحين هما CSD و MLP.
The aim of the work is to improve the performance of the WLD
descriptor using Gabor filters in a preprocessing stage. The
performance of the improved descriptor will be compared with the
performance of the LBP descriptor(a widely used descriptor in FER
researches). This performance will be achieved using the extremely
used expert system SVM besides the expert systems CSD and MLP.
Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية تحسين أداء واصف ويبر المحلي (WLD) في التعرف على تعابير الوجه باستخدام مرشح غيبر. تعابير الوجه هي وسيلة أساسية للتواصل غير اللفظي بين الناس وتحمل معلومات مهمة عن الحالات الذهنية والعاطفية. ومع تزايد استخدام الحواسيب في حياتنا اليومية، فإن التفاعل بين الإنسان والحاسوب يفتقر إلى القدرة على فهم هذه الإشارات العاطفية، مما يجعل الحواسيب عمياء عاطفياً. تهدف الدراسة إلى تحسين أداء WLD من خلال استخدام مرشحات غيبر في مرحلة المعالجة الأولية، ومقارنة أداء هذا الواصف مع واصف LBP الشائع الاستخدام في التعرف على تعابير الوجه. تم استخدام النظام الخبير SVM بالإضافة إلى نظامين خبيرين مقترحين هما CSD و MLP. أظهرت النتائج تحسناً كبيراً في أداء WLD عند استخدام مرشحات غيبر بنسبة تصل إلى 20%، بالإضافة إلى تحسين الوثوقية وتقليل زمن التنفيذ، خاصة مع نظام CSD.
Critical review
دراسة نقدية: تقدم الورقة البحثية مساهمة مهمة في مجال التعرف على تعابير الوجه من خلال تحسين أداء واصف ويبر المحلي باستخدام مرشح غيبر. ومع ذلك، يمكن الإشارة إلى بعض النقاط التي قد تحتاج إلى مزيد من البحث والتطوير. أولاً، تعتمد الدراسة بشكل كبير على قاعدة بيانات JAFFE التي تحتوي على صور مأخوذة في ظروف مخبرية محددة، مما قد يؤثر على تعميم النتائج في بيئات العمل الحقيقية. ثانياً، على الرغم من التحسن الكبير في الأداء، فإن التعقيد الحسابي الناتج عن استخدام مرشحات غيبر قد يكون عائقاً في تطبيقات الزمن الحقيقي. أخيراً، يمكن توسيع الدراسة لتشمل تعابير وجه إضافية مثل التعب والألم والحالات الذهنية الأخرى لتحسين شمولية النظام.
Questions related to the research
-
ما هو الهدف الرئيسي من البحث؟
الهدف الرئيسي من البحث هو تحسين أداء واصف ويبر المحلي (WLD) في التعرف على تعابير الوجه باستخدام مرشحات غيبر في مرحلة المعالجة الأولية.
-
ما هي الأنظمة الخبيرة التي تم استخدامها في الدراسة؟
تم استخدام النظام الخبير SVM بالإضافة إلى نظامين خبيرين مقترحين هما CSD و MLP.
-
ما هي قاعدة البيانات المستخدمة في التجارب؟
تم استخدام قاعدة البيانات اليابانية JAFFE التي تحتوي على صور لعشر عارضات يابانيات يظهرن تعابير مختلفة مثل السعادة والحزن والخوف والغضب والتفاجؤ والاشمئزاز.
-
ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟
أظهرت النتائج تحسناً كبيراً في أداء واصف ويبر المحلي (WLD) عند استخدام مرشحات غيبر بنسبة تصل إلى 20%، بالإضافة إلى تحسين الوثوقية وتقليل زمن التنفيذ، خاصة مع نظام CSD.
References used
Detection of Emotions from Video in Non-controlled Environment”. PHD thesis, By:RizwanKhan. University of Lyon, 2013
A Performance Evaluation of Local Descriptors ”,By: K. Mikolajczyk and C. Schmid. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615-1630, Oct. 2005
Filtering for Texture Classification: A Comparative Study”, By: T. Randen and J.H. Husoy. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 4, pp. 291-310, Apr. 1999
The research presents a design for an automated checking system for students. The
system takes a picture of the student, then it extracts his/her basic facial features. The
network was trained using the reverse spreading algorithm. If a training da
This paper presents a new method to recognize human face in different emotional situations. This method is based on proposed algorithm SD.R&C to discover skin and expression classification.
The purpose of this article is to shed light on the mechanism
and the procedures of a neuro-fuzzy controller that classifies an
input face into any of the four facial expressions, which are
Happiness, Sadness, Anger and Fear. This program works
a
The purpose of this article is to shed light on the mechanism
and the procedures of a program that classifies an input face into
any of the six basic facial expressions, which are Anger, Disgust,
Fear, Happiness, Sadness and Surprise, in addition
Recently PGB (photonic band gap) filters show a great
development. Here we will present two different PGB filters with
lattice etched in the ground plane. The rejection band characteristic
is function of the number and shape of elements etched. Th