Do you want to publish a course? Click here

Modeling and Simulation of a Self-Organizing Fuzzy Controller Using MATLAB & Simulink

نمذجة ومحاكاة المتحكم الضبابي ذاتي التنظيم باستخدام MATLAB & Simulink

3888   4   229   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Since the invention of Fuzzy logic and fuzzy control, the latter has been growing in spread and importance in many applications and devices in many life aspects. This maybe due to the easy use of a fuzzy control system, and for being far of math complications. Even if the plant model is unknown, a self-organizing fuzzy controller (SOFC) can improve the response of an already exist linear control table, or even can build a control table from scratch, by assessing current performance of the controller and adjusting the control table accordingly. This paper provides a simple article that shows how to design and use a self organizing fuzzy controller, through a simulation example using MATLAB & Simulink in which a variable torque loaded DC motor speed regulation is done. The simulation showed the ability of the controller to provide a good response and decrease speed error by a notable amount at load torque changing times. This paper can be used as textbook material for students or researchers interested in the field of adaptive control, especially self-organizing fuzzy control.


Artificial intelligence review:
Research summary
منذ اختراع المنطق الضبابي والتحكم الضبابي، شهد الأخير انتشاراً واسعاً واهتماماً متزايداً في تطبيقات متنوعة وأجهزة مختلفة. يتميز نظام التحكم الضبابي بسهولة تطبيقه وابتعاده عن تعقيدات العلاقات الرياضية. حتى في حالة عدم معرفة نموذج النظام، يمكن للمتحكم الضبابي ذاتي التنظيم تحسين استجابة متحكم ضبابي خطي موجود أو بناء جدول تحكم من الصفر. يوضح هذا البحث كيفية تصميم واستخدام المتحكم الضبابي ذاتي التنظيم من خلال نمذجة ومحاكاة باستخدام Matlab & Simulink، حيث تم استخدام المتحكم لتنظيم سرعة محرك كهربائي مستمر عند حمولات متغيرة. أظهرت المحاكاة قدرة المتحكم على تقديم استجابة جيدة وتقليل خطأ السرعة بشكل ملحوظ عند تغير الحمولة. يمكن استخدام هذا البحث كمرجع للطلاب والباحثين المهتمين في مجال التحكم التكيفي والتحكم الضبابي ذاتي التنظيم.
Critical review
دراسة نقدية: يقدم البحث مادة قيمة في مجال التحكم الضبابي ذاتي التنظيم، ولكن هناك بعض النقاط التي يمكن تحسينها. أولاً، قد يكون من المفيد تضمين المزيد من الأمثلة العملية والتطبيقات الواقعية لتعزيز فهم القراء. ثانياً، يمكن تحسين الشرح النظري لبعض المفاهيم لتكون أكثر وضوحاً وسهولة في الفهم، خاصة للقراء غير المتخصصين. ثالثاً، قد يكون من المفيد إجراء مقارنة مع أنواع أخرى من المتحكمات التكيفية لتقديم صورة شاملة عن مزايا وعيوب كل نوع. وأخيراً، يمكن تحسين هيكلية البحث وتنظيمه لتسهيل الوصول إلى المعلومات المطلوبة بسرعة وفعالية.
Questions related to the research
  1. ما هي الفائدة الرئيسية من استخدام المتحكم الضبابي ذاتي التنظيم؟

    الفائدة الرئيسية هي تحسين استجابة المتحكم الضبابي الخطي الموجود أو بناء جدول تحكم من الصفر دون الحاجة إلى معرفة نموذج النظام.

  2. ما هي الأدوات المستخدمة في نمذجة ومحاكاة المتحكم الضبابي ذاتي التنظيم في هذا البحث؟

    تم استخدام Matlab & Simulink في عملية النمذجة والمحاكاة.

  3. كيف تم اختبار أداء المتحكم الضبابي ذاتي التنظيم في البحث؟

    تم اختبار أداء المتحكم من خلال تنظيم سرعة محرك كهربائي مستمر عند حمولات متغيرة، وأظهرت المحاكاة قدرة المتحكم على تقديم استجابة جيدة وتقليل خطأ السرعة بشكل ملحوظ.

  4. ما هي التوصيات التي قدمها الباحث لتحسين أداء المتحكم الضبابي ذاتي التنظيم؟

    يوصى ببدء عملية التدريب انطلاقاً من جدول تحكم معد مسبقاً وفق المعلومات المتوفرة عن النظام لتجنب إطالة فترة التدريب، واختبار المتحكم مع أنظمة أكثر تعقيداً لاختبار كفاءة آلية التعديل.


References used
Levine, William S. The Control Handbook. Florida : CRC press, 2000. p. 1564. ISBN 81-7224-785-0
Chen, G. and Pham, T. T. Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems. New York : CRC Press, 2001. p. 316
Åström, Karl J and Björn, Wittenmark. Adaptive Control. 2nd edition. Amesterdam : Addison Wesley, 1995. p. 589
Matos D, Joana, Duorado C, António. A self-organizing fuzzy controller with a fixed maximum number of rules and an adaptive similarity factor. Informatic Engineering, Universidade de Coimbra. Coimbra : s.n., 1999. p. 44
Lee, Chien H. ; Wang, Sheng D. A self-organizing adaptive fuzzy controller. 80, 1996, Fuzzy Sets and Systems, pp. 295-313
rate research

Read More

One ofa car's suspension system functions is to isolate vibrations resulting from road on the driver and ensure a comfortable ride. But the design of control systems for semi-active suspension systems is difficult because of the non-linearity of the constituent elements of these systems which make the researches related to it characterized by complexity. So in order to improve the performance of semi-active suspension systems without bearing the effort of designing a model based controller, a control system is designed using self-organizing fuzzy controller based on the principle of delay-in-penalty to control a semi-active suspension system which uses a magneto rheological damper. The controller tries to enhance system performance using the desired response as it is described in the penalty table. The fuzzy logic controller is based on two inputs namely sprung mass velocity and unsprung mass velocity. Using a quarter car model with 2 degree-of-freedom the system is modeled and simulated in MATLAB &Simulink® and the results are compared to the widely used sky-hook strategy. the simulation showed the ability of the self-organizing fuzzy controller to provide good results in minimizing sprung mass acceleration in variousroad profiles compared to sky-hookstrategy.
This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Fuzzy Logic Controller (FLC) for Maximum Power Point Tracking (MPPT), to control the duty cycle of DC-DC Voltage Converter, to achieve the photovolt aic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, this research presents a new model for FLC developed in Matlab/Simulink environment. The proposed model for the controller is based on the conventional Perturb and Observe (P&O) technique. Where, in similar to the conventional P&O technique, the changes in the Power and tension of photovoltaic power system, are considered as the input variables of the proposed controller, while the output variable is the change in the duty cycle. The main advantage of the developed controller FLC, based on the considering the change in the duty cycle has a Variable Step Size, and directly related to the changes in the power and tension of the Photovoltaic system. Which make it possible to overcome the problem of fixed Step Size in the change of the duty cycle in the conventional MPPT- P&O Controller based on P&O technique. The MPPT- P&O Fuzzy, works by a variable step size achieve a fast speed response and high efficiency for tracking the MPP point under sudden and rapidly varying atmospheric conditions, compared with the conventional MPPT- P&O. The simulation results completed in Matlab/Simulink environment, showed the best performance of developed MPPT- P&O Fuzzy controller in tracking the MPP by achieving a better dynamic performance and high accuracy, compared with the use of the conventional MPPT- P&O under different atmospheric changes.
In this research, a research and educational tool for studying the sensitivity of the vehicle's suspension system to the properties and parameters of the suspension’s components is developed. This tool is a program that can study different models cre ated using the Matlab/Simulink software package with its various libraries. Different types of models can be analysed, such as differential equation models expressing a mathematical model, block diagrams, or state space models. The tool also enables students to identify the suspension’s components, and its basic design parameters, and choose these parameters. Researchers and students will be able to test their models in terms of response, overshoot, and sensitivity, when conducting simulations in different working conditions.
reliance on new and renewable sources of energy has grown in order to obtain electric power without the use of traditional fossil fuel sources. And thus solve the problems of the global energy crisis and also maintain a clean environment, through the fight against the dangers of global warming and its negative results Wind power is considered as one of the most important of these alternative energies. We will work in this research in order to be able to control wind turbine with variable speed through pitch angle control in order to organize power and control the rotational speed in order to make the power ideal. Where we will be using a fuzzy controller to control pitch angle instead of the traditional controllers, which is expected to improve system response and provide ease in the application and modification and reduction in the cost. By reference study we came to the result showing that most previous studies in advanced wind energy systems have addressed to control wind turbine using conventional controllers from PI or PID type. Show we have the problem of the need to know the exact mathematical model of the system. Where traditional controllers of wind turbines that operate at variable speed are based on mathematical models which may be complex and non-linear and neglect often physical phenomena, for example, magnetic saturation which leads to complexity in the calculation and unexpected performance of the driven system. The proposed research aims to provide a complete study through modeling and simulation using the Matlab about the use of fuzzy controller to control the wind turbine where traditional controllers of type PI will be designed to control the pitch angle and to control the rotational speed and fuzzy PI controllers to control the pitch angle. Results will be get and discussed and conclusion will be extracted from them. Research Results showed that the fuzzy control improves transient state behavior, but the steady-state behavior is better controlled when we use PI controller. So and based on the result we got, the PI controller can't be replaced actually with the fuzzy controller.
We used the general theory of electrical machines to facilitate the study and representation of the real machine and complex phenomena in which it occurs during transient situation where we represent the real machine other machine ideal equivalent to represent the physical phenomena in these model machine similar to those that occur in the real machine.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا