Do you want to publish a course? Click here

CS-BERT: a pretrained model for customer service dialogues

CS-BERT: نموذج مسبق لحوارات خدمة العملاء

413   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Large-scale pretrained transformer models have demonstrated state-of-the-art (SOTA) performance in a variety of NLP tasks. Nowadays, numerous pretrained models are available in different model flavors and different languages, and can be easily adapted to one's downstream task. However, only a limited number of models are available for dialogue tasks, and in particular, goal-oriented dialogue tasks. In addition, the available pretrained models are trained on general domain language, creating a mismatch between the pretraining language and the downstream domain launguage. In this contribution, we present CS-BERT, a BERT model pretrained on millions of dialogues in the customer service domain. We evaluate CS-BERT on several downstream customer service dialogue tasks, and demonstrate that our in-domain pretraining is advantageous compared to other pretrained models in both zero-shot experiments as well as in finetuning experiments, especially in a low-resource data setting.



References used
https://aclanthology.org/
rate research

Read More

In a typical customer service chat scenario, customers contact a support center to ask for help or raise complaints, and human agents try to solve the issues. In most cases, at the end of the conversation, agents are asked to write a short summary em phasizing the problem and the proposed solution, usually for the benefit of other agents that may have to deal with the same customer or issue. The goal of the present article is advancing the automation of this task. We introduce the first large scale, high quality, customer care dialog summarization dataset with close to 6500 human annotated summaries. The data is based on real-world customer support dialogs and includes both extractive and abstractive summaries. We also introduce a new unsupervised, extractive summarization method specific to dialogs.
Dialogue summarization has drawn much attention recently. Especially in the customer service domain, agents could use dialogue summaries to help boost their works by quickly knowing customer's issues and service progress. These applications require s ummaries to contain the perspective of a single speaker and have a clear topic flow structure, while neither are available in existing datasets. Therefore, in this paper, we introduce a novel Chinese dataset for Customer Service Dialogue Summarization (CSDS). CSDS improves the abstractive summaries in two aspects: (1) In addition to the overall summary for the whole dialogue, role-oriented summaries are also provided to acquire different speakers' viewpoints. (2) All the summaries sum up each topic separately, thus containing the topic-level structure of the dialogue. We define tasks in CSDS as generating the overall summary and different role-oriented summaries for a given dialogue. Next, we compare various summarization methods on CSDS, and experiment results show that existing methods are prone to generate redundant and incoherent summaries. Besides, the performance becomes much worse when analyzing the performance on role-oriented summaries and topic structures. We hope that this study could benchmark Chinese dialogue summarization and benefit further studies.
In online domain-specific customer service applications, many companies struggle to deploy advanced NLP models successfully, due to the limited availability of and noise in their datasets. While prior research demonstrated the potential of migrating large open-domain pretrained models for domain-specific tasks, the appropriate (pre)training strategies have not yet been rigorously evaluated in such social media customer service settings, especially under multilingual conditions. We address this gap by collecting a multilingual social media corpus containing customer service conversations (865k tweets), comparing various pipelines of pretraining and finetuning approaches, applying them on 5 different end tasks. We show that pretraining a generic multilingual transformer model on our in-domain dataset, before finetuning on specific end tasks, consistently boosts performance, especially in non-English settings.
The research security service, one of the key issues that contribute to the construction of the purchase decision at the client, and enhance customer satisfaction and building long-term relationship with him, including contributing to the achievem ent of customer loyalty. Where was identified the substance of the security service, objectives and its role in influencing customer satisfaction, and to identify the companies and entities that provide security service, as identified on the concept of customer satisfaction and the factors affecting it, has been reached in the search to a strong influence between the availability of insurance service provided by the companies and enhance satisfaction, our customers. And the existence of a significant effect between the security service provided by the companies and enhance customer satisfaction.
Humor detection has become a topic of interest for several research teams, especially those involved in socio-psychological studies, with the aim to detect the humor and the temper of a targeted population (e.g. a community, a city, a country, the em ployees of a given company). Most of the existing studies have formulated the humor detection problem as a binary classification task, whereas it revolves around learning the sense of humor by evaluating its different degrees. In this paper, we propose an end-to-end deep Multi-Task Learning (MTL) model to detect and rate humor and offense. It consists of a pre-trained transformer encoder and task-specific attention layers. The model is trained using MTL uncertainty loss weighting to adaptively combine all sub-tasks objective functions. Our MTL model tackles all sub-tasks of the SemEval-2021 Task-7 in one end-to-end deep learning system and shows very promising results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا