Do you want to publish a course? Click here

CSDS: A Fine-Grained Chinese Dataset for Customer Service Dialogue Summarization

CSDS: مجموعة بيانات صينية محبوبة من أجل حجز خدمة العملاء

363   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Dialogue summarization has drawn much attention recently. Especially in the customer service domain, agents could use dialogue summaries to help boost their works by quickly knowing customer's issues and service progress. These applications require summaries to contain the perspective of a single speaker and have a clear topic flow structure, while neither are available in existing datasets. Therefore, in this paper, we introduce a novel Chinese dataset for Customer Service Dialogue Summarization (CSDS). CSDS improves the abstractive summaries in two aspects: (1) In addition to the overall summary for the whole dialogue, role-oriented summaries are also provided to acquire different speakers' viewpoints. (2) All the summaries sum up each topic separately, thus containing the topic-level structure of the dialogue. We define tasks in CSDS as generating the overall summary and different role-oriented summaries for a given dialogue. Next, we compare various summarization methods on CSDS, and experiment results show that existing methods are prone to generate redundant and incoherent summaries. Besides, the performance becomes much worse when analyzing the performance on role-oriented summaries and topic structures. We hope that this study could benchmark Chinese dialogue summarization and benefit further studies.



References used
https://aclanthology.org/
rate research

Read More

In a typical customer service chat scenario, customers contact a support center to ask for help or raise complaints, and human agents try to solve the issues. In most cases, at the end of the conversation, agents are asked to write a short summary em phasizing the problem and the proposed solution, usually for the benefit of other agents that may have to deal with the same customer or issue. The goal of the present article is advancing the automation of this task. We introduce the first large scale, high quality, customer care dialog summarization dataset with close to 6500 human annotated summaries. The data is based on real-world customer support dialogs and includes both extractive and abstractive summaries. We also introduce a new unsupervised, extractive summarization method specific to dialogs.
Large-scale pretrained transformer models have demonstrated state-of-the-art (SOTA) performance in a variety of NLP tasks. Nowadays, numerous pretrained models are available in different model flavors and different languages, and can be easily adapte d to one's downstream task. However, only a limited number of models are available for dialogue tasks, and in particular, goal-oriented dialogue tasks. In addition, the available pretrained models are trained on general domain language, creating a mismatch between the pretraining language and the downstream domain launguage. In this contribution, we present CS-BERT, a BERT model pretrained on millions of dialogues in the customer service domain. We evaluate CS-BERT on several downstream customer service dialogue tasks, and demonstrate that our in-domain pretraining is advantageous compared to other pretrained models in both zero-shot experiments as well as in finetuning experiments, especially in a low-resource data setting.
This paper introduces MediaSum, a large-scale media interview dataset consisting of 463.6K transcripts with abstractive summaries. To create this dataset, we collect interview transcripts from NPR and CNN and employ the overview and topic description s as summaries. Compared with existing public corpora for dialogue summarization, our dataset is an order of magnitude larger and contains complex multi-party conversations from multiple domains. We conduct statistical analysis to demonstrate the unique positional bias exhibited in the transcripts of televised and radioed interviews. We also show that MediaSum can be used in transfer learning to improve a model's performance on other dialogue summarization tasks.
Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two es sential tasks to detect the fine-to-coarse sentiment polarities. ACSA and RP are highly correlated and usually employed jointly in real-world e-commerce scenarios. While most public datasets are constructed for ACSA and RP separately, which may limit the further exploitation of both tasks. To address the problem and advance related researches, we present a large-scale Chinese restaurant review dataset ASAP including 46, 730 genuine reviews from a leading online-to-offline (O2O) e-commerce platform in China. Besides a 5-star scale rating, each review is manually annotated according to its sentiment polarities towards 18 pre-defined aspect categories. We hope the release of the dataset could shed some light on the field of sentiment analysis. Moreover, we propose an intuitive yet effective joint model for ACSA and RP. Experimental results demonstrate that the joint model outperforms state-of-the-art baselines on both tasks.
Cant is important for understanding advertising, comedies and dog-whistle politics. However, computational research on cant is hindered by a lack of available datasets. In this paper, we propose a large and diverse Chinese dataset for creating and un derstanding cant from a computational linguistics perspective. We formulate a task for cant understanding and provide both quantitative and qualitative analysis for tested word embedding similarity and pretrained language models. Experiments suggest that such a task requires deep language understanding, common sense, and world knowledge and thus can be a good testbed for pretrained language models and help models perform better on other tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا