إلغاء تحديد الهوية هي مهمة اكتشاف الكيانات المتعلقة بالخصوصية في النص، مثل أسماء الشخص ورسائل البريد الإلكتروني ومعلومات الاتصال.لقد درست جيدا داخل المجال الطبي.تتزايد الحاجة إلى تكنولوجيا تحديد الهوية، حيث أن التعامل مع البيانات المحفوظة للخصوصية في ارتفاع الطلب في العديد من المجالات.في هذه الورقة، نركز على منشورات الوظيفة.نقدم JobStack، وهي تجسد جديدة لإلغاء تحديد البيانات الشخصية في الوظائف الشاغرة على Stackoverflow.نقدم خطوط أساس، ومقارنة الذاكرة الطويلة الأجل (LSTM) ونماذج المحولات.لتحسين هذه الأساس، نقوم بتجربة تمثيلات Bert، والبيانات المساعدة ذات الصلة بصراحة عبر التعلم متعدد المهام.تظهر نتائجنا أن البيانات الإضافية تساعد في تحسين أداء تحديد الهوية.أثناء تحسين تمثيلات BERT تحسين الأداء، تحولت بيرت فانيليا بشكل مدهش إلى أن تكون أكثر فعالية من بيرت المدربين على البيانات المتعلقة ب Stackoverflow.
De-identification is the task of detecting privacy-related entities in text, such as person names, emails and contact data. It has been well-studied within the medical domain. The need for de-identification technology is increasing, as privacy-preserving data handling is in high demand in many domains. In this paper, we focus on job postings. We present JobStack, a new corpus for de-identification of personal data in job vacancies on Stackoverflow. We introduce baselines, comparing Long-Short Term Memory (LSTM) and Transformer models. To improve these baselines, we experiment with BERT representations, and distantly related auxiliary data via multi-task learning. Our results show that auxiliary data helps to improve de-identification performance. While BERT representations improve performance, surprisingly vanilla'' BERT turned out to be more effective than BERT trained on Stackoverflow-related data.
References used
https://aclanthology.org/
This paper describes a freely available web-based demonstrator called HB Deid. HB Deid identifies so-called protected health information, PHI, in a text written in Swedish and removes, masks, or replaces them with surrogates or pseudonyms. PHIs are n
Building tools to remove sensitive information such as personal names, addresses, and telephone numbers - so called Protected Health Information (PHI) - from clinical free text is an important task to make clinical texts available for research. These
How would you explain Bill Gates to a German? He is associated with founding a company in the United States, so perhaps the German founder Carl Benz could stand in for Gates in those contexts. This type of translation is called adaptation in the tran
Pretraining-based neural network models have demonstrated state-of-the-art (SOTA) performances on natural language processing (NLP) tasks. The most frequently used sentence representation for neural-based NLP methods is a sequence of subwords that is
The aim of the study was to study the effect of organizational
values related to management (strength, elite, reward) on the
performance of employees in private hospitals in Lattakia
Governorate.