أدوات البناء لإزالة المعلومات الحساسة مثل الأسماء الشخصية والعناوين وأرقام الهواتف - ما يسمى بالمعلومات الصحية المحمية (PHI) - من النص الحر الإكلينيكي هي مهمة مهمة لجعل النصوص السريرية متاحة للبحث. يجب تقييم هذه أدوات تحديد الهوية فيما يتعلق بجودتها في شكل دقة القياسات وإعادة الاتصال. لتقييم هذه الأدوات، يجب أن تكون معايير الذهب - النص السريري المشروح - يجب أن تكون متاحة. هذه المعايير الذهبية موجودة لغات أكبر. للنرويجية، ماذا - على الإطلاق، لا توجد هذه الموارد. لذلك، تم تمديد كوربوس الإكلينيكي الاصطناعية النرويجية الموجودة بالفعل، Norsynthclinical، مع فيس ومشروحة من قبل اثنين من الناحيين، والحصول على اتفاقية مشتركة بين المعجبين بقيمة 0.94 F1. في المجموع، يحتوي Corpus على 409 حيلة فاي مشروحة وتسمى Norsynthclinical Phi. تم تطوير وتدريب الأداة الهجينة لإلغاء تحديد (تعلم الآلة والبيانات المستندة إلى القواعد) على النرويجية بالموارد المفتوحة المتاحة، وحصلت على تدبير إجمالي F1 من 0.73 واستدعاء 0.62، عند اختباره باستخدام Norsynthclinicalical Phi. يتم فتح Phi Norsynthclinical Phi ومتاحا في Github لاستخدامها من قبل مجتمع البحث.
Building tools to remove sensitive information such as personal names, addresses, and telephone numbers - so called Protected Health Information (PHI) - from clinical free text is an important task to make clinical texts available for research. These de-identification tools must be assessed regarding their quality in the form of the measurements precision and re- call. To assess such tools, gold standards - annotated clinical text - must be available. Such gold standards exist for larger languages. For Norwegian, how- ever, there are no such resources. Therefore, an already existing Norwegian synthetic clinical corpus, NorSynthClinical, has been extended with PHIs and annotated by two annotators, obtaining an inter-annotator agreement of 0.94 F1-measure. In total, the corpus has 409 annotated PHI instances and is called NorSynthClinical PHI. A de-identification hybrid tool (machine learning and rule-based meth- ods) for Norwegian was developed and trained with open available resources, and obtained an overall F1-measure of 0.73 and a recall of 0.62, when tested using NorSynthClinical PHI. NorSynthClinical PHI is made open and available at Github to be used by the research community.
References used
https://aclanthology.org/
In this paper, we develop Sindhi subjective lexicon using a merger of existing English resources: NRC lexicon, list of opinion words, SentiWordNet, Sindhi-English bilingual dictionary, and collection of Sindhi modifiers. The positive or negative sent
The National Virtual Translation Center (NVTC) seeks to acquire human language technology (HLT) tools that will facilitate its mission to provide verbatim English translations of foreign language audio and video files. In the text domain, NVTC has be
This paper introduces NorecNeg -- the first annotated dataset of negation for Norwegian. Negation cues and their in-sentence scopes have been annotated across more than 11K sentences spanning more than 400 documents for a subset of the Norwegian Revi
This paper describes a freely available web-based demonstrator called HB Deid. HB Deid identifies so-called protected health information, PHI, in a text written in Swedish and removes, masks, or replaces them with surrogates or pseudonyms. PHIs are n
Cross-target generalization is a known problem in stance detection (SD), where systems tend to perform poorly when exposed to targets unseen during training. Given that data annotation is expensive and time-consuming, finding ways to leverage abundan