Do you want to publish a course? Click here

Many wireless sensor network applications like forest fire detection and environment monitoring recommend making benefit from moving humans, vehicles, or animals to enhance network performance. In this research, we had improved our previous protocol (Dynamic Tree Routing DTR) to support mobility in a wireless sensor network. First, we had mathematically approximated the speed threshold for mobile sensors, which enables them to successfully associate with nearby coordinators. Second, we test our (MDTR) protocol in a network with mobile sensors sending packets toward the network's main coordinator. The simulation results obtained from network Simulator (NS2) showed a good approximation of speed threshold, and good performance of MDTR in term of delay, throughput, and hop-count compared with AODV and MZBR Protocols.
The location of wireless sensor nodes located in the center is necessary for applications where information about the site is important information such as security, protection, object tracking and other applications. localization algorithms are c lassified into two types: Range-based and Range-free. The study focused on Range-free localization algorithms because they are less expensive in terms of hardware requirements. The MATLAB was used to simulate the algorithms, whose performance was evaluated by changing the number of network nodes, the number of Anchor nodes, and the contract area of communication in order to illustrate performance differences in terms of localization error. The results showed the superiority of the amorphous algorithm, achieving high localization accuracy and lower cost for the number of Anchor nodes needed to achieve a small error.
Mobile Wireless Sensor Network (MWSN) is an emerging technology for attraction of researchers with its research advantage and various application domains. Due to limited resources of sensor nodes such as transmission power, communication capability and size of memory, data aggregation algorithms are the most practical technique that reduces large amount of transmission in this network. Security is an important criterion to be considered because, wireless sensor nodes are deployed in a remote or hostile environment area that is prone to attacks easily. Therefore, security are essential issue for MWSN to protect information against attacks. In this research, we offered an algorithm of secure data aggregation in MWSN based on pair-wise keys technology and hash function. We studied important parameters such as execution time, end-to-end delay and number of storied keys. Results showed that
Many wireless sensor network applications like forest fire detection and environment monitoring recommend making benefit from moving humans, vehicles, or animals to enhance network performance. In this research, we had improved our previous protoco l (Dynamic Tree Routing DTR) in order to support mobility in a wireless sensor network. First, we had mathematically approximated the speed threshold for mobile sensors, which enables them to successfully associate with nearby coordinators. Second, we test our (MDTR) protocol in a network with mobile sensors sending packets toward network's main coordinator. The simulation results obtained from network Simulator (NS2) showed a good approximation of speed threshold, and good performance of MDTR in term of delay, throughput, and hop-count compared with AODV and MZBR Protocols.
The great development of mobile wireless sensor networks has many very important applications. One of the most important applications that has attracted scientists' attention recently is to track animals in their homes to follow the behavior and li ves of some endangered animals, but monitoring animals activities in the forest is a very difficult task, especially if the animals to be monitored are teeny, therefore we cannot use the traditional tracking systems ) like GPS, As well as the harsh and dangerous nature of the forest make the use of wireless sensor networks the best solution, especially that sensors are low-cost, small size, which made them suitable for such tasks, in this research we will study new way to track a group of partridge where sensors are placed on these birds to observe their life and behavior ,The important challenge in this research is to know the location of these mobile birds to be able to the help them in appropriate time , so will introduce a new method that provides us with acceptable accuracy, a simple, easy, inexpensive and low energy consumption compared with other methods of animals tracking ,based on a set of predefined reference nodes, where sensors information is sent to a gathering center through these reference nodes ,then Analyze it and use it to the approximate location of the animals. We will evaluate this method using Network Simulator (NS2).
In this PAPER, we perform a study and extensive comparative between the well-known link quality estimators and CTP, a tree-based routing protocol provided by TinyOS for different network topology and simulate it using TOSSIM simulator to evaluate the performance of these estimators.
Mobile wireless sensor network (MWSN) is a wireless ad hoc network that consists of avery large number of tiny sensor nodes communicating with each other in which sensornodes are either equipped with motors for active mobility or attached to mobile objectsfor passive mobility. A real-time routing protocol for MWSN is an exciting area of research because messages in the network are delivered according to their end-to-end deadlines (packet lifetime) while sensor nodes are mobile. This paper proposes an enhanced realtime with load distribution (ERTLD) routing protocol for MWSN which is based on our previousrouting protocol RTLD. ERTLD utilized corona mechanism and optimal forwardingmetrics to forward the data packet in MWSN. It computes the optimal forwarding nodebased on RSSI, remaining battery level of sensor nodes and packet delayover one-hop. ERTLDensures high packet delivery ratio and experiences minimum end-to-end delay in WSNand MWSN compared to baseline routing protocol. . In this paper we consider a highly dynamic wireless sensor network system in which the sensor nodes and the base station(sink) are mobile.ERTLD has been studied and verified and compared with baseline routing protocols RTLD,MM-SPEED , RTLCthrough Network Simulator- 2(NS2)
Routing protocols play an essential role in meeting the quality of service requirements in the network, but achieving these requirements may require frequent send and receive operations to build and maintain routing tables, which consume sensors r esource If we take into consideration the limitations of wireless sensor networks in terms of the amount of available energy and storage capacity. In this research a performance comparison of the on-demand Distance Vector Routing protocol AODV and Hierarchical Routing protocolHR was carried out in terms of the packet delivery and loose rate, delay and jitter, and the amount of expended energy in the Wireless sensor network operates according to IEEE802.15.4 standard in cases where some of sensors get out of work for limited periods of time. The results showed that the hierarchical routing protocols perform better in terms of delay time and transfer rate and the amount of consumed energy than on-demand Distance Vector Routing protocol routing protocol, but suffer larger packet loss due to routing path corruption as a result of sensors crashes.
The experiment carried out to improve the efficiency of drip irrigation system , based on soil moisture. The indirect measure of humidity Was used in the experiment, connected with the pointing device (separator continued), and a control device pr ogrammed on a low humidity degree, which is degree the field capacity of the soil and which value is 25%, and on a high moisture degree which is saturation degree at 75%..
IDDQ testing techniques are used to detect the physical defects such gate oxide shorts,floating gates and bridging faults, and which happen for the presence of manufacturing faults during the manufacturing processes of CMOS integrated circuits, wh ich cannot be detected by classical logical testing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا