Do you want to publish a course? Click here

Recent methods based on pre-trained language models have shown strong supervised performance on commonsense reasoning. However, they rely on expensive data annotation and time-consuming training. Thus, we focus on unsupervised commonsense reasoning. We show the effectiveness of using a common framework, Natural Language Inference (NLI), to solve diverse commonsense reasoning tasks. By leveraging transfer learning from large NLI datasets, and injecting crucial knowledge from commonsense sources such as ATOMIC 2020 and ConceptNet, our method achieved state-of-the-art unsupervised performance on two commonsense reasoning tasks: WinoWhy and CommonsenseQA. Further analysis demonstrated the benefits of multiple categories of knowledge, but problems about quantities and antonyms are still challenging.
Although grammatical error correction (GEC) has achieved good performance on texts written by learners of English as a second language, performance on low error density domains where texts are written by English speakers of varying levels of proficie ncy can still be improved. In this paper, we propose a contrastive learning approach to encourage the GEC model to assign a higher probability to a correct sentence while reducing the probability of incorrect sentences that the model tends to generate, so as to improve the accuracy of the model. Experimental results show that our approach significantly improves the performance of GEC models in low error density domains, when evaluated on the benchmark CWEB dataset.
Quality Estimation (QE) for Machine Translation has been shown to reach relatively high accuracy in predicting sentence-level scores, relying on pretrained contextual embeddings and human-produced quality scores. However, the lack of explanations alo ng with decisions made by end-to-end neural models makes the results difficult to interpret. Furthermore, word-level annotated datasets are rare due to the prohibitive effort required to perform this task, while they could provide interpretable signals in addition to sentence-level QE outputs. In this paper, we propose a novel QE architecture which tackles both the word-level data scarcity and the interpretability limitations of recent approaches. Sentence-level and word-level components are jointly pretrained through an attention mechanism based on synthetic data and a set of MT metrics embedded in a common space. Our approach is evaluated on the Eval4NLP 2021 shared task and our submissions reach the first position in all language pairs. The extraction of metric-to-input attention weights show that different metrics focus on different parts of the source and target text, providing strong rationales in the decision-making process of the QE model.
In this paper, we introduce the Greek version of the automatic annotation tool ERRANT (Bryant et al., 2017), which we named ELERRANT. ERRANT functions as a rule-based error type classifier and was used as the main evaluation tool of the systems parti cipating in the BEA-2019 (Bryant et al., 2019) shared task. Here, we discuss grammatical and morphological differences between English and Greek and how these differences affected the development of ELERRANT. We also introduce the first Greek Native Corpus (GNC) and the Greek WikiEdits Corpus (GWE), two new evaluation datasets with errors from native Greek learners and Wikipedia Talk Pages edits respectively. These two datasets are used for the evaluation of ELERRANT. This paper is a sole fragment of a bigger picture which illustrates the attempt to solve the problem of low-resource languages in NLP, in our case Greek.
Code-mixing has become a moving method of communication among multilingual speakers. Most of the social media content of the multilingual societies are written in code-mixed text. However, most of the current translation systems neglect to convert co de-mixed texts to a standard language. Most of the user written code-mixed content in social media remains unprocessed due to the unavailability of linguistic resource such as parallel corpus. This paper proposes a Neural Machine Translation(NMT) model to translate the Sinhala-English code-mixed text to the Sinhala language. Due to the limited resources available for Sinhala-English code-mixed(SECM) text, a parallel corpus is created with SECM sentences and Sinhala sentences. Srilankan social media sites contain SECM texts more frequently than the standard languages. The model proposed for code-mixed text translation in this study is a combination of Encoder-Decoder framework with LSTM units and Teachers Forcing Algorithm. The translated sentences from the model are evaluated using BLEU(Bilingual Evaluation Understudy) metric. Our model achieved a remarkable BLEU score for the translation.
Customers of machine learning systems demand accountability from the companies employing these algorithms for various prediction tasks. Accountability requires understanding of system limit and condition of erroneous predictions, as customers are oft en interested in understanding the incorrect predictions, and model developers are absorbed in finding methods that can be used to get incremental improvements to an existing system. Therefore, we propose an accountable error characterization method, AEC, to understand when and where errors occur within the existing black-box models. AEC, as constructed with human-understandable linguistic features, allows the model developers to automatically identify the main sources of errors for a given classification system. It can also be used to sample for the set of most informative input points for a next round of training. We perform error detection for a sentiment analysis task using AEC as a case study. Our results on the sample sentiment task show that AEC is able to characterize erroneous predictions into human understandable categories and also achieves promising results on selecting erroneous samples when compared with the uncertainty-based sampling.
GECko+ : a Grammatical and Discourse Error Correction Tool We introduce GECko+, a web-based writing assistance tool for English that corrects errors both at the sentence and at the discourse level. It is based on two state-of-the-art models for gramm ar error correction and sentence ordering. GECko+ is available online as a web application that implements a pipeline combining the two models.
In this research, We present a scientific advanced developed study and keeping up with new studies and technologies of very short-term electrical load forecasting and applying this study for electrical load forecasting of basic Syrian electrical p ower system by studying this prediction for next four hours according to the criterion applied in the Syrian Electricity Ministry with ten minutes intervals ,we call it "Instant electrical load forecasting".
In this research, we have studied the concepts of Integral Equations which solution his it is importance in many scientific applications. They have been classified according them to the nucleus type that this solution depends upon it. Also the relati onship between these equations and the differential equations has been discussed, including the applying of some analytical methods to find the correct solution. The analytical methods have proved the existence and uniqueness of the solution. The application of numerical methods for finding the approximate solution with using the MATLAB software and error analysis were conducted, where the approximate results showed the accuracy and closeness to the analytical results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا