Do you want to publish a course? Click here

GECko+: a Grammatical and Discourse Error Correction Tool

Gecko +: أداة تصحيح خطأ نحوي

334   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

GECko+ : a Grammatical and Discourse Error Correction Tool We introduce GECko+, a web-based writing assistance tool for English that corrects errors both at the sentence and at the discourse level. It is based on two state-of-the-art models for grammar error correction and sentence ordering. GECko+ is available online as a web application that implements a pipeline combining the two models.



References used
https://aclanthology.org/
rate research

Read More

Although grammatical error correction (GEC) has achieved good performance on texts written by learners of English as a second language, performance on low error density domains where texts are written by English speakers of varying levels of proficie ncy can still be improved. In this paper, we propose a contrastive learning approach to encourage the GEC model to assign a higher probability to a correct sentence while reducing the probability of incorrect sentences that the model tends to generate, so as to improve the accuracy of the model. Experimental results show that our approach significantly improves the performance of GEC models in low error density domains, when evaluated on the benchmark CWEB dataset.
It is difficult to rank and evaluate the performance of grammatical error correction (GEC) systems, as a sentence can be rewritten in numerous correct ways. A number of GEC metrics have been used to evaluate proposed GEC systems; however, each system relies on either a comparison with one or more reference texts---in what is known as the gold standard for reference-based metrics---or a separate annotated dataset to fine-tune the reference-less metric. Reference-based systems have a low correlation with human judgement, cannot capture all the ways in which a sentence can be corrected, and require substantial work to develop a test dataset. We propose a reference-less GEC evaluation system that is strongly correlated with human judgement, solves the issues related to the use of a reference, and does not need another annotated dataset for fine-tuning. The proposed system relies solely on commonly available tools. Additionally, currently available reference-less metrics do not work properly when part of a sentence is repeated as opposed to reference-based metrics. In our proposed system, we look to address issues inherent in reference-less metrics and reference-based metrics.
Grammatical error correction (GEC) suffers from a lack of sufficient parallel data. Studies on GEC have proposed several methods to generate pseudo data, which comprise pairs of grammatical and artificially produced ungrammatical sentences. Currently , a mainstream approach to generate pseudo data is back-translation (BT). Most previous studies using BT have employed the same architecture for both the GEC and BT models. However, GEC models have different correction tendencies depending on the architecture of their models. Thus, in this study, we compare the correction tendencies of GEC models trained on pseudo data generated by three BT models with different architectures, namely, Transformer, CNN, and LSTM. The results confirm that the correction tendencies for each error type are different for every BT model. In addition, we investigate the correction tendencies when using a combination of pseudo data generated by different BT models. As a result, we find that the combination of different BT models improves or interpolates the performance of each error type compared with using a single BT model with different seeds.
This paper presents our wining contribution to SemEval 2021 Task 8: MeasEval. The purpose of this task is identifying the counts and measurements from clinical scientific discourse, including quantities, entities, properties, qualifiers, units, modif iers, and their mutual relations. This task can be induced to a joint entity and relation extraction problem. Accordingly, we propose CONNER, a cascade count and measurement extraction tool that can identify entities and the corresponding relations in a two-step pipeline model. We provide a detailed description of the proposed model hereinafter. Furthermore, the impact of the essential modules and our in-process technical schemes are also investigated.
This paper investigates how to correct Chinese text errors with types of mistaken, missing and redundant characters, which are common for Chinese native speakers. Most existing models based on detect-correct framework can correct mistaken characters, but cannot handle missing or redundant characters due to inconsistency between model inputs and outputs. Although Seq2Seq-based or sequence tagging methods provide solutions to the three error types and achieved relatively good results in English context, they do not perform well in Chinese context according to our experiments. In our work, we propose a novel alignment-agnostic detect-correct framework that can handle both text aligned and non-aligned situations and can serve as a cold start model when no annotation data are provided. Experimental results on three datasets demonstrate that our method is effective and achieves a better performance than most recent published models.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا