Do you want to publish a course? Click here

Neural Machine Translation for Sinhala-English Code-Mixed Text

الترجمة الآلية العصبية لنص Sinhala-English

291   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Code-mixing has become a moving method of communication among multilingual speakers. Most of the social media content of the multilingual societies are written in code-mixed text. However, most of the current translation systems neglect to convert code-mixed texts to a standard language. Most of the user written code-mixed content in social media remains unprocessed due to the unavailability of linguistic resource such as parallel corpus. This paper proposes a Neural Machine Translation(NMT) model to translate the Sinhala-English code-mixed text to the Sinhala language. Due to the limited resources available for Sinhala-English code-mixed(SECM) text, a parallel corpus is created with SECM sentences and Sinhala sentences. Srilankan social media sites contain SECM texts more frequently than the standard languages. The model proposed for code-mixed text translation in this study is a combination of Encoder-Decoder framework with LSTM units and Teachers Forcing Algorithm. The translated sentences from the model are evaluated using BLEU(Bilingual Evaluation Understudy) metric. Our model achieved a remarkable BLEU score for the translation.



References used
https://aclanthology.org/
rate research

Read More

In this paper, we (team - oneNLP-IIITH) describe our Neural Machine Translation approaches for English-Marathi (both direction) for LoResMT-20211 . We experimented with transformer based Neural Machine Translation and explored the use of different li nguistic features like POS and Morph on subword unit for both English-Marathi and Marathi-English. In addition, we have also explored forward and backward translation using web-crawled monolingual data. We obtained 22.2 (overall 2 nd) and 31.3 (overall 1 st) BLEU scores for English-Marathi and Marathi-English on respectively
This paper describes the systems submitted to WAT 2021 MultiIndicMT shared task by IITP-MT team. We submit two multilingual Neural Machine Translation (NMT) systems (Indic-to-English and English-to-Indic). We romanize all Indic data and create subwor d vocabulary which is shared between all Indic languages. We use back-translation approach to generate synthetic data which is appended to parallel corpus and used to train our models. The models are evaluated using BLEU, RIBES and AMFM scores with Indic-to-English model achieving 40.08 BLEU for Hindi-English pair and English-to-Indic model achieving 34.48 BLEU for English-Hindi pair. However, we observe that the shared romanized subword vocabulary is not helping English-to-Indic model at the time of generation, leading it to produce poor quality translations for Tamil, Telugu and Malayalam to English pairs with BLEU score of 8.51, 6.25 and 3.79 respectively.
Machine translation performs automatic translation from one natural language to another. Neural machine translation attains a state-of-the-art approach in machine translation, but it requires adequate training data, which is a severe problem for low- resource language pairs translation. The concept of multimodal is introduced in neural machine translation (NMT) by merging textual features with visual features to improve low-resource pair translation. WAT2021 (Workshop on Asian Translation 2021) organizes a shared task of multimodal translation for English to Hindi. We have participated the same with team name CNLP-NITS-PP in two submissions: multimodal and text-only NMT. This work investigates phrase pairs injection via data augmentation approach and attains improvement over our previous work at WAT2020 on the same task in both text-only and multimodal NMT. We have achieved second rank on the challenge test set for English to Hindi multimodal translation where Bilingual Evaluation Understudy (BLEU) score of 39.28, Rank-based Intuitive Bilingual Evaluation Score (RIBES) 0.792097, and Adequacy-Fluency Metrics (AMFM) score 0.830230 respectively.
The neural machine translation approach has gained popularity in machine translation because of its context analysing ability and its handling of long-term dependency issues. We have participated in the WMT21 shared task of similar language translati on on a Tamil-Telugu pair with the team name: CNLP-NITS. In this task, we utilized monolingual data via pre-train word embeddings in transformer model based neural machine translation to tackle the limitation of parallel corpus. Our model has achieved a bilingual evaluation understudy (BLEU) score of 4.05, rank-based intuitive bilingual evaluation score (RIBES) score of 24.80 and translation edit rate (TER) score of 97.24 for both Tamil-to-Telugu and Telugu-to-Tamil translations respectively.
Many NLP models operate over sequences of subword tokens produced by hand-crafted tokenization rules and heuristic subword induction algorithms. A simple universal alternative is to represent every computerized text as a sequence of bytes via UTF-8, obviating the need for an embedding layer since there are fewer token types (256) than dimensions. Surprisingly, replacing the ubiquitous embedding layer with one-hot representations of each byte does not hurt performance; experiments on byte-to-byte machine translation from English to 10 different languages show a consistent improvement in BLEU, rivaling character-level and even standard subword-level models. A deeper investigation reveals that the combination of embeddingless models with decoder-input dropout amounts to token dropout, which benefits byte-to-byte models in particular.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا