أصبح خلط التعليمات البرمجية طريقة متحركة للاتصال بين مكبرات الصوت متعددة اللغات. تتم كتابة معظم محتوى وسائل التواصل الاجتماعي للمجتمعات متعددة اللغات في النص المختلط من التعليمات البرمجية. ومع ذلك، فإن معظم أنظمة الترجمة الحالية إهمال تحويل النصوص المختلطة من التعليمات البرمجية إلى لغة قياسية. تظل معظم المحتوى المكتوب من المستخدمين من المستخدمين في وسائل الإعلام الاجتماعية غير المعتمدة بسبب عدم توفر الموارد اللغوية مثل Corpus الموازي. تقترح هذه الورقة نموذجا للترجمة الآلية العصبية (NMT) لترجمة النص المختلط بين السنهالية - الإنجليزية إلى لغة سنهالا. نظرا للموارد المحدودة المتاحة لنص Sinhala-English النص المختلط (SEMM)، يتم إنشاء Corpus الموازي مع جمل SEMM وجمل Sinhala. تحتوي مواقع وسائل التواصل الاجتماعي Srilankan على نصوص SEMM بشكل متكرر أكثر من اللغات القياسية. النموذج المقترح للترجمة النصية المختلطة في التعليمات البرمجية في هذه الدراسة هو مزيج من إطار فك تشفير التشفير مع وحدات LSTM والمعلمين تجبر الخوارزمية. يتم تقييم الجمل المترجمة من النموذج باستخدام متري بلو (تقييم ثنائي اللغة). حقق نموذجنا درجة بلو رائعة للترجمة.
Code-mixing has become a moving method of communication among multilingual speakers. Most of the social media content of the multilingual societies are written in code-mixed text. However, most of the current translation systems neglect to convert code-mixed texts to a standard language. Most of the user written code-mixed content in social media remains unprocessed due to the unavailability of linguistic resource such as parallel corpus. This paper proposes a Neural Machine Translation(NMT) model to translate the Sinhala-English code-mixed text to the Sinhala language. Due to the limited resources available for Sinhala-English code-mixed(SECM) text, a parallel corpus is created with SECM sentences and Sinhala sentences. Srilankan social media sites contain SECM texts more frequently than the standard languages. The model proposed for code-mixed text translation in this study is a combination of Encoder-Decoder framework with LSTM units and Teachers Forcing Algorithm. The translated sentences from the model are evaluated using BLEU(Bilingual Evaluation Understudy) metric. Our model achieved a remarkable BLEU score for the translation.
References used
https://aclanthology.org/
In this paper, we (team - oneNLP-IIITH) describe our Neural Machine Translation approaches for English-Marathi (both direction) for LoResMT-20211 . We experimented with transformer based Neural Machine Translation and explored the use of different li
This paper describes the systems submitted to WAT 2021 MultiIndicMT shared task by IITP-MT team. We submit two multilingual Neural Machine Translation (NMT) systems (Indic-to-English and English-to-Indic). We romanize all Indic data and create subwor
Machine translation performs automatic translation from one natural language to another. Neural machine translation attains a state-of-the-art approach in machine translation, but it requires adequate training data, which is a severe problem for low-
The neural machine translation approach has gained popularity in machine translation because of its context analysing ability and its handling of long-term dependency issues. We have participated in the WMT21 shared task of similar language translati
Many NLP models operate over sequences of subword tokens produced by hand-crafted tokenization rules and heuristic subword induction algorithms. A simple universal alternative is to represent every computerized text as a sequence of bytes via UTF-8,