Do you want to publish a course? Click here

Error Identification for Machine Translation with Metric Embedding and Attention

تحديد خطأ للحصول على الترجمة الآلية مع التضمين المتري والاهتمام

296   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Quality Estimation (QE) for Machine Translation has been shown to reach relatively high accuracy in predicting sentence-level scores, relying on pretrained contextual embeddings and human-produced quality scores. However, the lack of explanations along with decisions made by end-to-end neural models makes the results difficult to interpret. Furthermore, word-level annotated datasets are rare due to the prohibitive effort required to perform this task, while they could provide interpretable signals in addition to sentence-level QE outputs. In this paper, we propose a novel QE architecture which tackles both the word-level data scarcity and the interpretability limitations of recent approaches. Sentence-level and word-level components are jointly pretrained through an attention mechanism based on synthetic data and a set of MT metrics embedded in a common space. Our approach is evaluated on the Eval4NLP 2021 shared task and our submissions reach the first position in all language pairs. The extraction of metric-to-input attention weights show that different metrics focus on different parts of the source and target text, providing strong rationales in the decision-making process of the QE model.



References used
https://aclanthology.org/
rate research

Read More

Fine-grained control of machine translation (MT) outputs along multiple attributes is critical for many modern MT applications and is a requirement for gaining users' trust. A standard approach for exerting control in MT is to prepend the input with a special tag to signal the desired output attribute. Despite its simplicity, attribute tagging has several drawbacks: continuous values must be binned into discrete categories, which is unnatural for certain applications; interference between multiple tags is poorly understood. We address these problems by introducing vector-valued interventions which allow for fine-grained control over multiple attributes simultaneously via a weighted linear combination of the corresponding vectors. For some attributes, our approach even allows for fine-tuning a model trained without annotations to support such interventions. In experiments with three attributes (length, politeness and monotonicity) and two language pairs (English to German and Japanese) our models achieve better control over a wider range of tasks compared to tagging, and translation quality does not degrade when no control is requested. Finally, we demonstrate how to enable control in an already trained model after a relatively cheap fine-tuning stage.
The paper presents experiments in neural machine translation with lexical constraints into a morphologically rich language. In particular and we introduce a method and based on constrained decoding and which handles the inflected forms of lexical ent ries and does not require any modification to the training data or model architecture. To evaluate its effectiveness and we carry out experiments in two different scenarios: general and domain-specific. We compare our method with baseline translation and i.e. translation without lexical constraints and in terms of translation speed and translation quality. To evaluate how well the method handles the constraints and we propose new evaluation metrics which take into account the presence and placement and duplication and inflectional correctness of lexical terms in the output sentence.
This paper discusses a classification-based approach to machine translation evaluation, as opposed to a common regression-based approach in the WMT Metrics task. Recent machine translation usually works well but sometimes makes critical errors due to just a few wrong word choices. Our classification-based approach focuses on such errors using several error type labels, for practical machine translation evaluation in an age of neural machine translation. We made additional annotations on the WMT 2015-2017 Metrics datasets with fluency and adequacy labels to distinguish different types of translation errors from syntactic and semantic viewpoints. We present our human evaluation criteria for the corpus development and automatic evaluation experiments using the corpus. The human evaluation corpus will be publicly available upon publication.
Cross-attention is an important component of neural machine translation (NMT), which is always realized by dot-product attention in previous methods. However, dot-product attention only considers the pair-wise correlation between words, resulting in dispersion when dealing with long sentences and neglect of source neighboring relationships. Inspired by linguistics, the above issues are caused by ignoring a type of cross-attention, called concentrated attention, which focuses on several central words and then spreads around them. In this work, we apply Gaussian Mixture Model (GMM) to model the concentrated attention in cross-attention. Experiments and analyses we conducted on three datasets show that the proposed method outperforms the baseline and has significant improvement on alignment quality, N-gram accuracy, and long sentence translation.
Machine translation usually relies on parallel corpora to provide parallel signals for training. The advent of unsupervised machine translation has brought machine translation away from this reliance, though performance still lags behind traditional supervised machine translation. In unsupervised machine translation, the model seeks symmetric language similarities as a source of weak parallel signal to achieve translation. Chomsky's Universal Grammar theory postulates that grammar is an innate form of knowledge to humans and is governed by universal principles and constraints. Therefore, in this paper, we seek to leverage such shared grammar clues to provide more explicit language parallel signals to enhance the training of unsupervised machine translation models. Through experiments on multiple typical language pairs, we demonstrate the effectiveness of our proposed approaches.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا