Do you want to publish a course? Click here

ELERRANT: Automatic Grammatical Error Type Classification for Greek

elerrant: تصنيف نوع الأخطاء النحوية التلقائي لليونانية

444   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we introduce the Greek version of the automatic annotation tool ERRANT (Bryant et al., 2017), which we named ELERRANT. ERRANT functions as a rule-based error type classifier and was used as the main evaluation tool of the systems participating in the BEA-2019 (Bryant et al., 2019) shared task. Here, we discuss grammatical and morphological differences between English and Greek and how these differences affected the development of ELERRANT. We also introduce the first Greek Native Corpus (GNC) and the Greek WikiEdits Corpus (GWE), two new evaluation datasets with errors from native Greek learners and Wikipedia Talk Pages edits respectively. These two datasets are used for the evaluation of ELERRANT. This paper is a sole fragment of a bigger picture which illustrates the attempt to solve the problem of low-resource languages in NLP, in our case Greek.



References used
https://aclanthology.org/
rate research

Read More

We perform neural machine translation of sentence fragments in order to create large amounts of training data for English grammatical error correction. Our method aims at simulating mistakes made by second language learners, and produces a wider rang e of non-native style language in comparison to a state-of-the-art baseline model. We carry out quantitative and qualitative evaluation. Our method is shown to outperform the baseline on data with a high proportion of errors.
Although grammatical error correction (GEC) has achieved good performance on texts written by learners of English as a second language, performance on low error density domains where texts are written by English speakers of varying levels of proficie ncy can still be improved. In this paper, we propose a contrastive learning approach to encourage the GEC model to assign a higher probability to a correct sentence while reducing the probability of incorrect sentences that the model tends to generate, so as to improve the accuracy of the model. Experimental results show that our approach significantly improves the performance of GEC models in low error density domains, when evaluated on the benchmark CWEB dataset.
In this paper, we present a new method for training a writing improvement model adapted to the writer's first language (L1) that goes beyond grammatical error correction (GEC). Without using annotated training data, we rely solely on pre-trained lang uage models fine-tuned with parallel corpora of reference translation aligned with machine translation. We evaluate our model with corpora of academic papers written in English by L1 Portuguese and L1 Spanish scholars and a reference corpus of expert academic English. We show that our model is able to address specific L1-influenced writing and more complex linguistic phenomena than existing methods, outperforming what a state-of-the-art GEC system can achieve in this regard. Our code and data are open to other researchers.
In this work, we study the task of classifying legal texts written in the Greek language. We introduce and make publicly available a novel dataset based on Greek legislation, consisting of more than 47 thousand official, categorized Greek legislation resources. We experiment with this dataset and evaluate a battery of advanced methods and classifiers, ranging from traditional machine learning and RNN-based methods to state-of-the-art Transformer-based methods. We show that recurrent architectures with domain-specific word embeddings offer improved overall performance while being competitive even to transformer-based models. Finally, we show that cutting-edge multilingual and monolingual transformer-based models brawl on the top of the classifiers' ranking, making us question the necessity of training monolingual transfer learning models as a rule of thumb. To the best of our knowledge, this is the first time the task of Greek legal text classification is considered in an open research project, while also Greek is a language with very limited NLP resources in general.
Text style can reveal sensitive attributes of the author (e.g. age and race) to the reader, which can, in turn, lead to privacy violations and bias in both human and algorithmic decisions based on text. For example, the style of writing in job applic ations might reveal protected attributes of the candidate which could lead to bias in hiring decisions, regardless of whether hiring decisions are made algorithmically or by humans. We propose a VAE-based framework that obfuscates stylistic features of human-generated text through style transfer, by automatically re-writing the text itself. Critically, our framework operationalizes the notion of obfuscated style in a flexible way that enables two distinct notions of obfuscated style: (1) a minimal notion that effectively intersects the various styles seen in training, and (2) a maximal notion that seeks to obfuscate by adding stylistic features of all sensitive attributes to text, in effect, computing a union of styles. Our style-obfuscation framework can be used for multiple purposes, however, we demonstrate its effectiveness in improving the fairness of downstream classifiers. We also conduct a comprehensive study on style-pooling's effect on fluency, semantic consistency, and attribute removal from text, in two and three domain style transfer.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا