ترغب بنشر مسار تعليمي؟ اضغط هنا

دور الذكاء الاصطناعي في رفع كفاءة النظم الإدارية لإدارة الموارد البشرية بجامعة تبوك

The Role of Artificial Intelligence in Raising the Efficiency of Administrative Systems for Human Resources Management at the University of Tabuk

89   0   1   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة العربية
 تمت اﻹضافة من قبل Shamra Editor




: هدفت الدراسة إلى التعرف على دور الذكاء الاصطناعي في رفع كفاءة النظم الإدارية لإدارة الموارد البشرية بجامعة تبوك. وقد اعتمدت الباحثة لإجراء الدراسة المنهج التحليلي. ولتحقيق أهداف الدراسة تم تطوير أداة الدراسة (الاستبانة) كأداة لجمع البيانات من أفراد عينة الدراسة التي تم اختيارها بأسلوب الطريقة العشوائية لجمع البيانات من إداري الموارد البشرية بجامعة تبوك والبالغ عددهم (70) موظفا وموظفة بعد أن تم التأكد من صدقها وثباتها. تكونت أداة الدارسة من (٣٦) فقرة لقياس فاعلية برنامج قائم على الذكاء الاصطناعي في رفع كفاءة النظم الإدارية لإدارة الموارد البشرية بجامعة تبوك. أظهرت نتائج الدراسة عدم وجود فروق ذات دلالة إحصائية (α =0.05) في أداة الدراسة تعزى لمتغيرات الدراسة (الجنس، المستوى التعليمي، عدد سنوات الخبرة) عند مستوى دلالة (0.05). وعلى ضوء النتائج التي توصلت إليها الدراسة فقد أوصت الباحثة بالعديد من التوصيات منها ضرورة إجراء المزيد من الدراسات حول الذكاء الاصطناعي وعلاقته بكفاءة النظم الإدارية لإدارة الموارد البشرية بحيث تشمل عينات أكبر من الجامعات على مستوى المملكة.

المراجع المستخدمة
Zhao, L., Chen, L., Liu, Q., Zhang, M. & Copland, H. (2019). Artificial Intelligence-Based Platform for Online Teaching Management Systems. Journal of Intelligent & Fuzzy Systems, 37(1), 45-51.
Sun, H. (2019). Study on Application of Data Mining Technology in University Computer Network Educational Administration Management System. Journal of Intelligent & Fuzzy Systems, 37(3), 3311-3318
1. Popenici, S. & Kerr, S. (2017). Exploring the Impact of Artificial Intelligence on Teaching and Learning in Higher Education. Popenici and Kerr Research and Practice in Technology Enhanced Learning, 12(22), 1- 13
Ocana-Fernandez, Y., Valenzuela- Fernandez, Garro-Aburto, L. (2019). Artificial Intelligence and its Implications in Higher Education. Propositos y Representaciones, 7(2), 536-568.
قيم البحث

اقرأ أيضاً

يظهر هذا البحث تصميم متحكم عائم للتحكم بزاوية انحراف شفرات العنفة الريحية بهدف تحسين أداء العنفة الريحية و الحصول على أعظم استطاعة ممكنة و تقليل الضياعات الناتجة عن التسارع و التباطؤ في دوران العنفة الريحية و من ثم تحسين معامل كفاءة أداء العنفة الريح ية؛ و ذلك من خلال الإفادة من تقنيات الذكاء الاصطناعي و بصورة خاصة المنطق العائم، إذ إن المتحكم العائم يساعدنا على تجاوز نقاط الضعف في المتحكمات التقليدية التي تحتاج إلى نموذج رياضي معقد للمنظومة المتحكم بها. صمم متحكم عائم تناسبي تكاملي و قورِن بمحتكمٍ تقليدي تناسبي تكاملي لنظام عنفة ريحية ممثلة بتابع التحويل الواصف لهذه العنفة، ووضعت القواعد اللغوية للمتحكم و توابع الانتماء لإشارتي الخطأ و تراكم الخطأ باستخدام بيئة ماتلاب، و قورنت النتائج التي أظهرت استجابة فضلى عند استخدام المتحكم العائم.
جزء من بحث مقدم لنيل درجة الماجستير في علوم الويب لعام 2017 ، يتضمن التعريف بالذكاء التسويقي في دراسة نظرية موسعة ، وطريقة بناء نظام معتمد على الانترنت كمصدر للبيانات و منهجية المعالجة ونتائج تطبيقية .
تقرير صادر عن اليونسكو عن دور الذكاء الاصطناعي في الادماج والتعليم يناقش الحاجة إلى مسارات تحويلية لتذليل العقبات المتعددة لاستثمار الذكاء الاصطناعي في قطاع التعليم
المسؤولية الجنائية للذكاء الاصطناعي تتمثل أهمية هذه الدراسة في أهمية موضوعها الجديد والحيوي، وهو المسؤولية الجنائية الناتجة عن أخطاء الذكاء الاصطناعي في التشريع الإماراتي "دراسة مقارنة"، فعلى امتداد الخمسين سنة الماضية تضافرت الجهود العالمية في عدد من الميادين، كالفلسفة والقانون وعلم النفس وعلم المنطق والرياضيات، وعلم الأحياء وغيرها من العلوم، ومنذ سنوات بدأت هذه الجهود تحصد من ثمارها وظهرت إلى الوجود تطبيقات مذهلة للذكاء الاصطناعي، وهذا ما دفع دولة الإمارات العربية المتحدة لاستحداث وزارة للذكاء الاصطناعي وعلوم المستقبل، فهذه الخطوة تُضاف إلى سجل الإمارات الحافل بكل ما هو جديد في الثقافة والعلوم وغيرها من المجالات، فالإمارات سبّاقة في البحث وجلب أي أفكار جديدة أو عالمية وتطبيقها، والهدف من ذلك هو الارتقاء بالعمل الإداري. لأن اعتماد الإدارة على الذكاء الاصطناعي يساعدها على التكيف مع التغيرات المتلاحقة، ويساعدها أيضاً على مواجهة التحديات المتعددة والمختلفة، وبالتالي تحقيق الميزة التنافسية التي تسعى الإدارة إلى تحقيقها.
في السنوات الأخيرة نمت مشكلة تصنيف الكائنات في الصّور نتيجة لمتطلبات القطاع الصناعي.على الرّغم من تعدد التقنيات المستخدمة للمساعدة في عملية التصنيف SIFT Scale Invariant Feature Transforms، ORB Oriented Fast And Rotated Brief , SURF Speed Up Robust Features، إضافة لشبكات التعلم العميق Deep Learning Neural Network DNN والشبكات العصبونية الالتفافية Convolutional Neural Network CNN، فإن الأنظمة المقترحة لمعالجة هذه المشكلة تفتقر للحل الشّامل للصعوبات المتمثلة بوقت التّدريب الطّويل والذاكرة العائمة أثناء عملية التدريب، وانخفاض معدّل التصنيف. تعتبر الشبكات العصبونية الالتفافيةConvolutional Neural Networks (CNNs) من أكثر الخوارزميات استخداما لهذه المهمة، فقد كانت نموذجا حسابيا لتحليل البيانات الموجودة في الصور. تم اقتراح نموذج شبكة التفافية عميقة جديد لحل المشاكل المذكورة أعلاه. يهدف البحث إلى إظهار أداء نظام التّعرف باستخدام شبكاتCNNs على الذّاكرة المتاحة وزمن التدريب وذلك من خلال منهجة متغيرات مناسبة للشبكة العصبونية الالتفافية. قاعدة البيانات المستخدمة في هذا البحث هي CIFAR10 المكونة من60000 صورة ملونة تنتسب لعشرة أصناف، حيث أن كل 6000 صورة تكون لصنف من هذه الأصناف. يوجد 50000 صورة للتدريب و 10000 صورة للاختبار. حقق النموذج لدى اختباره على عينة من الصور المنتقاة من قاعدة البيانات CIFAR10 معدل تصنيف 98.87%.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا