الهدف
يهدف هذا البحث إلى وصف العديد من المجالات التي يمكن أن يلعب فيها الذكاء الاصطناعي دورًا في تطوير الطب الشخصي ومراقبة الأدوية، والتحولات التي أحدثها في مجال علم الأحياء والعلاج. كما تناول القيود التي يواجهها تطبيق تقنيات الذكاء الاصطناعي وقدم ا
قتراحات لمزيد من البحث.
المنهج
لقد أجرينا مراجعة شاملة للبحوث والأوراق المتعلقة بدور الذكاء الاصطناعي في الطب الشخصي وفحص الأدوية، وقمنا بتصفية قائمة الأعمال لتلك المتعلقة بهذه المراجعة.
النتائج
يمكن للذكاء الاصطناعي أن يلعب دورًا مهمًا في تطوير الأدوية الشخصية ومراقبة الأدوية في جميع المراحل السريرية المتعلقة بتطوير وتنفيذ منتجات صحية مخصصة جديدة، بدءًا من إيجاد الأدوية المناسبة لاختبار فائدتها. بالإضافة إلى ذلك، يمكن للخبرة في استخدام تقنيات الذكاء الاصطناعي أن تلعب دورًا خاصًا في هذا الصدد.
المناقشة
ستعتمد قدرة الذكاء الاصطناعي على تعزيز عملية اتخاذ القرار في الطب الشخصي وفحص الأدوية إلى حد كبير على دقة الاختبارات ذات الصلة والطرق التي يتم بها تخزين البيانات المنتجة وتجميعها والوصول إليها ودمجها في النهاية.
النتائج
كشفت مراجعة الأدبيات ذات الصلة أن تقنيات الذكاء الاصطناعي يمكن أن تعزز عملية صنع القرار في مجال الطب الشخصي وفحص الأدوية من خلال تحسين طرق تجميع البيانات المنتجة والوصول إليها ودمجها في النهاية. تتمثل إحدى العقبات الرئيسية في هذا المجال في أن معظم المستشفيات ومراكز الرعاية الصحية لا تستخدم حلول الذكاء الاصطناعي ، بسبب افتقار المتخصصين في الرعاية الصحية إلى الخبرة اللازمة لبناء نماذج ناجحة باستخدام تقنيات الذكاء الاصطناعي ودمجها مع سير العمل السريري.
تتكرر تأخيرات الرحلات الجوية في جميع أنحاء العالم (حوالي 20٪ من رحلات الطيران تصل متأخرة أكثر من 15 دقيقة) وتقدر كلفتها السنوية بعشرات المليارات من الدولارات. يجعل هذا السيناريو التنبؤ بتأخيرات الرحلة قضية أساسية لشركات الطيران والمسافرين. الهدف الرئ
يسي من هذا العمل هو تطبيق تنبؤ بتأخير وصول رحلة مجدولة تبعاً للظروف الجوية. يأخذ تأخير الوصول المتوقع في الاعتبار كلاً من معلومات الرحلة (المطار الأصلي ، مطار الوجهة ، وقت المغادرة ووقت الوصول) وأحوال الطقس في المطار الأصلي والمطار المقصود وفقًا لجدول الرحلة. تم تحليل الرحلات الجوية ومجموعات المعطيات الخاصة بالملاحظات الجوية باستخدام الخوارزميات المتوازية المطبقة في برنامج MapReduce المنفّذ على منصّة سحابية. تظهر النتائج دقة عالية في التنبؤ بالتأخيرات مع عتبة معينة. على سبيل المثال ، مع عتبة تأخير مدتها 15 دقيقة ، نحقق دقة تبلغ 74.2 ٪ و 71.8 ٪ من التذكر recall على الرحلات المتأخرة ، بينما مع عتبة 60 دقيقة ، كانت الدقة 85.8 ٪ ، وتذكّر التأخر هو 86.9 ٪. علاوة على ذلك ، توضح النتائج التجريبية قابلية التوسّع للمتنبئ التي يمكن تحقيقها أثناء أداء مهام إعداد المعطيات والتنقيب بها كتطبيقات MapReduce على السحابة.
تعرض المحاضرة شرح عن علم البيانات وعلاقته بعلم الإحصاء والتعلم الآلي وحالتين دراسيتين عن دور عالم البيانات في تصميم حلول تعتمد على استخراج المعرفة من حجم كبير من البيانات المتوفرة, كما يتم عرض أهم المهام في المؤتمرات العلمية التي يمكن المشاركة بها لطلاب المعلوماتية المهتمين بهذا المجال
الذكاء هو القدرة على فهم و تعلم الأشياء.
الذكاء الطبيعي هو كائن له دماغ, او شيء ما, يمكنه من التعلم, و الفهم, و حل المشكلات و اتخاذ القرارات.
الذكاء الصنعي علم يبحث في السلوك الذكي لغير الكائنات الحية.
تم في هذا البحث اقتراح نظام هجين بين الخوارزمية الجينية و شبكة العنقدة
كوهنين المضببة, حيث تعد الخوارزمية الجينية أحد أساليب الذكاء الصنعي و هي من
الأساليب الحديثة.
للعمل على تطوير البحث العلمي و اختيار الأشخاص الموهوبين من طلاب الدراسات العليا (الماجستير) للاستمرار و نيل درجة الدكتوراه في جامعة تشرين. فقد تم إعداد هذا البحث الذي يهدف إلى اقتراح نموذج لقياس درجة الإبداع و الموهبة عند طلاب الدراسات العليا باستخدا
م إحدى تقنيات الذكاء الصنعي ممثلة بالمنطق الضبابي. لقد تم بناء نظام خبير يحوي قاعدة استدلال تتضمن ثلاثة أنواع من الاختبارات: الاختبار النظري، الاختبار العملي, اختبار الإبداع في كل مقرر دراسي. كما هدف هذا النظام الذكي إلى تحديد القدرة على اتخاذ القرار و الذي يعطي نسبة الموهبة عند طلاب الدراسات العليا. و قد توصلت الدراسة إلى مجموعة هامة من النتائج من أهمها الآتي: أظهرت النتائج قوة و موثوقية عالية تبين مصداقية عمل هذا النموذج المقترح حيث وصلت صدقية النتائج بين 85% و 100% و ذلك باستخدام طريقتين مختلفتين لفك تضبيب النموذج المقترح.
هذا الكتاب تم وضعه من قبل ثلاثة خبراء في المجال, وهو الكتاب الوحيد الذي يشرح تفاصيل واضحة في هذا الموضوع - ايلون موسك
إن الهدفَ الرئيسي من عمليةِ التنقيب في البيانات هو استخراج المعلومات و اكتشاف
المعرفةِ من قواعدِ البياناتِ الضخمة، حيث تُعتبر العنقدة أحد أهم الوظائف التي يمكن
القيامَ بها في هذا المجال. يوجدُ العديدُ من طرقِ و خوارزمياتِ العنقدة، إلا أن تحديد أو
تقدير عدد العناقيد التي يجبُ استخراجها من عينةٍ ما يعتبر من أهم القضايا التي تواجها
معظمُ هذه الطرق. يركز هذا البحث على مسألةِ تقديرِ عدد العناقيد في حالةِ العنقدة
الهرمية. نقَدم في هذا البحث تقييماً لثلاثةٍ من أكثرِ الطرقَ شيوعاً في تقديرِ عددِ العناقيد.
يرمي البحث بشكل أساسي نحو تحقيق الأهداف الثلاثة التالية:
- أولاً: دراسة و تحليل كل من فعاليتي تقييم أداء العاملين و التفقد اليومي في الجمهورية العربية السورية
كنماذج لفعاليات الكوادر البشرية التي يمكن الاستفادة من بياناتها ضمن تطبيقات الذكاء الصنعي
.
- ثانياً: دراسة و تحليل آليات عمل أحد آليات الذكاء الصنعي و هي التنقيب في المعطيات و اختيار
الأدوات المناسبة لمعالجة بيانات فعاليات الكوادر البشرية.
- ثالثاً: اقتراح نموذج تطبيقي للإدارة الذكية للموارد البشرية يستند إلى التنقيب في المعطيات لمعالجة
عينة البيانات التي تم جمعها بغية استكشاف المعرفة الكامنة داخل هذه المعطيات بما يدعم عملية
اتخاذ القرارات المتعلقة بالكوادر البشرية في مؤسسات الجمهورية العربية السورية و من ثم مقارنة أداء
التقنيات التي تم استخدامها و بيان مدى ملاءمتها لهذا النوع من المعطيات.
يظهر هذا البحث تصميم متحكم عائم للتحكم بزاوية انحراف شفرات العنفة الريحية بهدف تحسين أداء العنفة الريحية و الحصول على أعظم استطاعة ممكنة و تقليل الضياعات الناتجة عن التسارع و التباطؤ في دوران العنفة الريحية و من ثم تحسين معامل كفاءة أداء العنفة الريح
ية؛ و ذلك من خلال الإفادة من تقنيات الذكاء الاصطناعي و بصورة خاصة المنطق العائم، إذ إن المتحكم العائم يساعدنا على تجاوز نقاط الضعف في المتحكمات التقليدية التي تحتاج إلى نموذج رياضي معقد للمنظومة المتحكم بها.
صمم متحكم عائم تناسبي تكاملي و قورِن بمحتكمٍ تقليدي تناسبي تكاملي لنظام عنفة ريحية ممثلة بتابع التحويل الواصف لهذه العنفة، ووضعت القواعد اللغوية للمتحكم و توابع الانتماء لإشارتي الخطأ و تراكم الخطأ باستخدام بيئة ماتلاب، و قورنت النتائج التي أظهرت استجابة فضلى عند استخدام المتحكم العائم.