يهدف التنقيب عن البيانات التعليمية إلى دراسة البيانات المتوفرة في المجال التعليمي وإخراج المعرفة المخفية منه بغية الاستفادة منها في تعزيز عملية التعليم واتخاذ قرارات ناجحة من شأنها تحسين الأداء الأكاديمي للطالب. تقترح هذه الدراسة استخدام تقنيات التنق
يب عن البيانات لتحسين التنبؤ بأداء الطلاب، حيث تم تطبيق ثلاث خوارزميات تصنيف Naïve Bayes, J48, Support Vector Machine)) على قاعدة بيانات أداء الطلاب ، ثم تم تصميم مصنف جديد لدمج نتائج تلك المصنفات الفردية باستخدام تقنية الدمج Voting Method . تم استخدام الأداة WEKAالتي تدعم الكثير من خوارزميات و طرائق التنقيب في البيانات. تظهر النتائج أن مصنف الدمج لديه أعلى دقة للتنبؤ بمستويات الطلاب مقارنة بالمصنفات الأخرى ، حيث حقق دقة تعرف وصلت إلى74.8084 % . و أفادت خوارزمية العنقدةsimple k-means في تجميع الطلاب المتشابهين في مجموعات منفصلة بالتالي فهم مميزات كل مجموعة مما يساعد على قيادة وتوجيه كل مجموعة على حدى.
الاتصالات المكتوبة هي ذات أهمية قصوى لتقدم البحث العلمي. ومع ذلك، قد تتأثر سرعة التطوير من ندرة المراجعين للحكم على جودة المواد البحثية. في هذا السياق، أصبحت الأساليب التلقائية التي يمكنها الاستعلام عن القطاعات اللغوية في مساهمات مكتوبة من خلال اكتشا
ف وجود أو عدم وجود أنماط الخطابية المشتركة أصبحت ضرورة. تهدف هذه الورقة إلى مقارنة تقنيات تعلم الآلات الخاضعة للإشراف التي تم اختبارها لإنجاز تحليل النوع في مقاطع مقدمة من مقالات هندسة البرمجيات. تم تنفيذ نهج شبه مشار إليه لزيادة عدد الجمل المشروح في اللوحات (المتاحة على: مجهول). تم إجراء نهجين إشرافين باستخدام الانحدار من SVM وانحدار لوجستي لتقييم درجة F- النتيجة لتحليل النوع في الجور. تم العثور على تقنية استنادا إلى الانحدار اللوجستي ونقلها لإجراء تحليل النوع بشكل مرض للغاية بمعدل 88.25 على درجة F عند استرداد الأنماط على المستوى العام.
يعد العمل المبلغ عنه وصف لمشاركتنا في تصنيف تغريدات CovID19 التي تحتوي على أعراض "مهمة مشتركة، نظمتها تعدين وسائل التواصل الاجتماعي للتطبيقات الصحية (SMM4H)" ورشة العمل.يصف الأدبيات نهجا لتعلم جهازين تم استخدامها لبناء نظام تصنيف من الدرجة الثلاثة، و
هذا يصنف التغريدات المتعلقة CovID19، إلى ثلاث فصول، بزيادة، التقارير الذاتية، والتقارير غير الشخصية، وأدب / إخباري.يتم وصف خطوات تغريدات المعالجة المسبقة، واستخراج ميزة، وتطوير نماذج تعلم الجهاز، على نطاق واسع في الوثائق.حصل كل من نماذج التعلم المتقدمة، عند تقييمه من قبل المنظمين، عشرات F1 من 0.93 و 0.92 على التوالي.
مع زيادة الشبكات الاجتماعية ، بدأ الناس في مشاركة المعلومات عبر أنواع مختلفة من وسائل التواصل.
في هذا العمل قمنا بالاستفادة من قصص الأطفال وتوظيفها لتعليم الاطفال وذلك عن طريق قراءة قصة لهم وتحويلها إلى نص ومعالجة النص باستخدام اللغات الطبيعية
و استخراج المشاعر بشكل اتوماتيكي من هذه القصة و لتحقيق ذلك قمنا باستخدام عدة تقنيات و دمجها و قارنا بين نتائجها على عدد من القصص القصيرة المخصصة للأطفال حيث تم استخدام كل من التقنيات المختلفة غير الخاضعة للإشراف مثال Dictionary Basedأو خاضعة للإشراف كالشبكات العصبونية التي تعتمد على البيانات لتحليل المشاعر حيث استخدمنا مصنفات متعددة وهي Support Vector Machineوstochastic Gradient Descent و Decision Tree و Random ForestوNaïve BayesوK-Nearest NeighborوNearest Centroidكذلك استخدمنا الشبكات العصبونية العميقة كمثال الشبكات العصبونية التكرارية RNNو في النهاية تم التوصل إلى استنتاج المشاعر الصحيحة للقصة من خلال Dictionary Basedالتي اعطت افضل دقة ثم إظهار صورة التعبير الصحيح الذي يبين للطفل التعبير المراد إبداؤه عند سماع أحداث هذه القصةليتفاعل معه ويتعلم التعبير الصحيح
في الآونة الأخيرة، تم عرض فئة من تقنيات التتبع تسمى "التتبع عن طريق الكشف" لإعطاء نتائج واعدة بسرعات في الوقت الحقيقي، تقوم هذه الطرق بتدريب المصنف التمييزي بطريقة عبر الانترنت لفصل الكائن عن الخلفية. يعمل المصنف على تمهيد نفسه باستخدام حالة التعقب
الحالية لاستخراج أمثلة إيجابية وسلبية من الإطار الحالي. وبالتالي ، يمكن أن تؤدي الأخطاء الطفيفة في المتعقب إلى أمثلة تدريب مصنفة بشكل غير صحيح ، مما يؤدي إلى تدهور المصنف ويمكن أن يتسبب في الانجراف. في هذه الورقة ، نوضح أن استخدام التتبع البسيط عبر الإنترنت وفي الوقت الفعلي ( SORT) وهو نهج عملي لتتبع الكائنات المتعددة مع التركيز على خوارزميات بسيطة و فعالة.
يهدف المشروع في المقام الأول إلى توظيف الذكاء الاصطناعي ، وتحديداً مهارات برمجة شبكة عصبية حيث الشبكات العصبية بدورها هي شبكات مهتمة بالتدريب والتعلم من الخطأ ، وتوظيف هذا الخطأ لتحقيق أفضل النتائج.
(CNN) على وجه الخصوص هي واحدة من أهم الشبكات العص
بية التي تعالج مشاكل وقضايا التصنيف. وبالتالي فإن هذا المشروع يهدف إلى تصميم شبكة عصبية التفافية تصنف المركبات إلى عدة أنواع حيث سنقوم بتصميم الشبكة وتدريبها على قاعدة البيانات حيث أن قاعدة البيانات تتضمن صورًا لأنواع متعددة من المركبات وستقوم الشبكة بتصنيف كل صورة إلى نوعها ، بعد تعديل الصور وإجراء التغييرات المناسبة وتحويلها إلى اللون الرمادي واكتشاف الحواف والخطوط وبعد أن تصبح الصور جاهزة تبدأ عملية التدريب وبعد انتهاء عملية التدريب سنخرج بنتائج التصنيف وبعدها اختبار بمجموعة جديدة من الصور ومن اهم تطبيقات هذا المشروع الالتزام برصف السيارات والشاحنات والمركبات بشكل عام وكأن صورة تم ادخالها كسيارة لعينة السيارة وهي شاحنة ، على سبيل المثال ، سيعطي هذا خطأ حيث ستكتشف الشبكة ذلك من خلال فحصها وتصنيفها. كشاحنة ، نكتشف أن هناك انتهاكًا لقوانين الرصف
انتشرت كلمة "البيانات الضخمة" في عام 2017 وأصبحت الأكثر شيوعًا في صناعة التكنولوجيا المتقدمة، حيث يستخدم التعلم الآلي الذي يسمح لأجهزة الكمبيوتر لتحليل البيانات السابقة والتنبؤ بالبيانات المستقبلية على نطاق واسع في الأماكن المألوفة. ويمكن لغير المتخص
صين في التعلم الآلي استخدامه أيضًا. ولدراسة الطريقة التحليلية للتعلم الآلي الإحصائي لا بد من التعرف على مفهوم الذكاء الاصطناعي وتصنيفه الرئيسي والتقنيات التحليلية المتضمنة والمتمثلة في التعلم الالي والتعلم العميق. لقد تطور التعلم الآلي بفضل بعض الاختراقات في مجال الذكاء الاصطناعي . وهي ادراك كفاءة تعليم أجهزة الكمبيوتر اضافة الى اختراع الانترنت. ويبقى للشبكات العصبية دور مهم وضروري لتعليم أجهزة الكمبيوتر التفكير مثل البشر ، حيث تُستخدم هذه الشبكات البيانات التي يستطيعون الوصول إليها لاتخاذ القرارات. وتوجد العديد من الخوارزميات للتعرف على التعلم الالي ،وما نؤكد عليه في دراستنا إظهار طرق وتطبيقات التحليل الإحصائي الآلي ، مثل "تحليل الانحدار" و "شجرة القرارات" و "طريقة متوسط k" و"تحليل الرابطة"
حظي مؤخرا اختصاص البيانات الضخمة باهتمام كبير في مجالات متنوعة منها (الطب , العلوم , الادارة, السياسة , ......)
و يهتم هذا الاختصاص بدراسة مجموعة البيانات الضخمة والتي تعجز الادوات والطرق الشائعة على معالجتها و ادارتها و تنظيمها خلال فترة زمنية مقبو
لة و بناء نموذج للتعامل مع هذه المعطيات والتنبؤ باغراض مطلوبة منها.
ولاجراء هذه الدراسات ظهرت طرق عدة منها النماذج التي تعتمد على مجموعة من البيانات و نماذج تعتمد على المحاكاة و في هذه المقالة تم توضيح الفرق بين النموذجين و تطبيق نهج جديد يعتمد على التكامل بين النموذجين لاعطاء نموذح افضل لمعالجة مسالة البيوت البلاستيكة
تعرض المحاضرة شرح عن علم البيانات وعلاقته بعلم الإحصاء والتعلم الآلي وحالتين دراسيتين عن دور عالم البيانات في تصميم حلول تعتمد على استخراج المعرفة من حجم كبير من البيانات المتوفرة, كما يتم عرض أهم المهام في المؤتمرات العلمية التي يمكن المشاركة بها لطلاب المعلوماتية المهتمين بهذا المجال
دراسة الهياكل الجيولوجية المكشوفة على سطح الأرض ذات أهمية كبيرة بشكل عام وخصوصا في التصميم الهندسي والبناء.
في هذا البحث ، استخدمنا 2206 صورة مع 12 ملصق للتعرف على الهياكل الجيولوجية بناءً على نموذج Inception-v3. تم اعتماد الصور ذات التدرج الرمادي و
اللون في النموذج. كما تم بناء نموذج الشبكة العصبية التلافيفية (CNN) وتم تطبيق خوارزمية أقرب جار (KNN) والشبكة العصبية الاصطناعية (ANN) وتعزيز التدرج الشديد (XGBoost) في تصنيف الهياكل الجيولوجية بناءً على الميزات المستخرجة من مكتبة رؤية الكمبيوتر مفتوحة المصدر (OpenCV).
أخيرًا ، تمت مقارنة أداء الطرق الخمس وأظهرت النتائج أن أداء KNN و ANN و XGBoost كان ضعيفًا وبدقة أقل من 40.0٪. أما CNN فعد عانت من فرط التدريب Overfitting.
كان للنموذج الذي تم تدريبه باستخدام التعلم بالنقل تأثير كبير على مجموعة بيانات صغيرة من صور التركيب الجيولوجي. وأفضل نموذجين وصلوا إلى دقة 83.3٪ و 90.0٪ على التوالي. هذا يدل على أن النسيج هو السمة الرئيسية في هذا البحث. يمكن أن يستخرج التعلم القائم على نموذج التعلم العميق ميزات بيانات البنية الجيولوجية الصغيرة بشكل فعال ، وهو قوي في تصنيف صور الهيكل الجيولوجي.