ترغب بنشر مسار تعليمي؟ اضغط هنا

التعرف على الأسماء العربية المكتوبة بخط اليد بإستخدام التعلم العميق

Recognition of Hand Written Arabic Names Using Deep Learning

1810   2   1   0.0 ( 0 )
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة العربية
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

بناء حواسيب تستغني عن أدوات الإدخال محدودة الفضاء (مثل لوحة المفاتيح) وامتلاكها لمقدرة السمع و القراءة ظل من مجالات البحث النشطة في علوم الحاسوب , قدم فيها الباحثون عدد مقدر من الطرق و الخوارزميات لحوسبةالسمع و القراءة ضمن ما يعرف بالتعرف على الأنماطفي علوم الحاسوب. ومن بين هذه الطرق الطريقة الشمولية (Holistic approach)، التي أثبتت كفاءتها في التعرف السريع (سمعاً أو قراءة) بالإضافة إلي مفهوم التعلم العميق الذي يعتبر ثورة في مجال تعلم الآلة في الوقت الحالي,وزاد الإهتمام به حديثاً خصوصاً بعد الزيادة الكبيرة في سرعة المعالجة الحاسوبية و التقدم في المعالجة المتوازية. هذه الدراسة تقدم تجارب إدراك ناجحة للشبكات العصبية العميقة في التعرف شمولياً على الأسماء العربية الأكثر شيوعاً، حيث تم إستخدام أدوات التعلم العميق و تمت تجربتها على السبعة أسماءالاكثر شيوعا بحسب مجموعة بيانات جامعة السودان للاسماء (SUST-ARG names) وبعد إجراء مراحل التدريب الخمسة , إستطاعت الشبكة أن تتعرف علي كل الأسماء وبنسبة 100% .


ملخص البحث
البحث المقدم من جامعة السودان للعلوم والتكنولوجيا يركز على تصميم نظام للتعرف على الأسماء العربية المكتوبة بخط اليد باستخدام تقنيات التعلم العميق، وتحديداً الشبكات العصبية الالتفافية. تمت تجربة النظام على مجموعة بيانات SUST-ARG التي تحتوي على أسماء عربية شائعة. بعد خمس مراحل من التدريب، تمكنت الشبكة العصبية من تحقيق نسبة دقة تصل إلى 100% في التعرف على الأسماء. البحث يتناول أيضاً مراحل معالجة الصور الرقمية، بدءاً من الإعداد المسبق للصور، مروراً بإزالة الشوائب وتوحيد الأحجام، وصولاً إلى مرحلة التعرف باستخدام الشبكة العصبية. النتائج أظهرت فعالية النظام في التعرف على الأسماء بدقة عالية، مما يعزز إمكانية استخدامه في تطبيقات عملية متنوعة.
قراءة نقدية
دراسة نقدية: البحث قدم إسهاماً مهماً في مجال التعرف على النصوص العربية المكتوبة بخط اليد باستخدام تقنيات التعلم العميق. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، التركيز على مجموعة بيانات محدودة قد يقلل من تعميم النتائج على نطاق أوسع من الأسماء والنصوص. ثانياً، لم يتم التطرق بشكل كافٍ إلى التحديات التي قد تواجه النظام في التعرف على خط اليد غير المقروء أو المتداخل. ثالثاً، يمكن تحسين البحث بإضافة مقارنات مع تقنيات أخرى للتعرف على النصوص لمعرفة مدى تفوق النظام المقترح.
أسئلة حول البحث
  1. ما هي التقنية الرئيسية المستخدمة في البحث للتعرف على الأسماء العربية المكتوبة بخط اليد؟

    التقنية الرئيسية المستخدمة هي الشبكات العصبية الالتفافية (Convolutional Neural Networks).

  2. ما هي مجموعة البيانات التي تم استخدامها لاختبار أداء الشبكة العصبية؟

    تم استخدام مجموعة بيانات SUST-ARG التي تحتوي على أسماء عربية شائعة.

  3. ما هي نسبة الدقة التي حققها النظام في التعرف على الأسماء بعد التدريب؟

    النظام حقق نسبة دقة تصل إلى 100% في التعرف على الأسماء.

  4. ما هي المراحل التي تمر بها الصور قبل إدخالها إلى الشبكة العصبية للتعرف عليها؟

    المراحل تشمل الإعداد المسبق للصور، إزالة الشوائب، توحيد الأحجام، وتحويل الصور إلى مصفوفات يمكن معالجتها بواسطة الشبكة العصبية.


المراجع المستخدمة
Li Deng and Dong Yu (2014), "Deep Learning: Methods and Applications", Foundations and Trends® in Signal Processing
Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016): Deep Learning. MIT Press
قيم البحث

اقرأ أيضاً

يصف هذا البحث نظاما للتعرف على الكلمة العربية المكتوبة بخط اليد دون تقطيع سابق للكلمة إلى محارف, و سيتم التعرف من خلاله على مستويين, و قد طور هذا النظام اعتمادا على نظام التعرف الضوئي على الحروف, و خوارزمية ماركوف المخفية, و عدد من التوابع (المورفولو جية), و خوارزميات استرجاع الصور اعتمادا على المحتوى.
نظرا لقوتها العظيمة في النمذجة البيانات غير الإقليدية مثل الرسوم البيانية أو الفتحات، فقد فتحت التعلم العميق على تقنيات الرسم البياني (I.E.، Graph Newerations Nearials (GNNS)) باب جديد لحل مشاكل NLP ذات الصلة بالرسوم البيانية الصعبة. لقد شهدت زيادة ا لمصالح في تطبيق التعلم العميق على تقنيات الرسم البياني إلى NLP، وقد حققت نجاحا كبيرا في العديد من مهام NLP، بدءا من مهام التصنيف مثل تصنيف الجملة، ووضع العلامات الدلالية الدلالية واستخراج العلاقات، إلى مهام التوليد مثل الترجمة الآلية، والسؤال توليد وتلخيص. على الرغم من هذه النجاحات، لا تزال التعلم العميق على الرسوم البيانية ل NLP لا يزال العديد من التحديات، بما في ذلك تحويل بيانات تسلسل النص الأصلي تلقائيا إلى بيانات منظم بياني للغاية، والبيانات المعقدة النمذجة بشكل فعال تتضمن تعيين بين المدخلات المستندة إلى الرسم البياني وبيانات الإخراج غير المنظمة الأخرى تسلسل، الأشجار، وبيانات الرسم البياني مع أنواع متعددة في كل من العقد والحواف. سيتغطي هذا البرنامج التعليمي مواضيع ذات صلة ومثيرة للاهتمام على تطبيق التعلم العميق على تقنيات الرسم البياني إلى NLP، بما في ذلك بناء الرسم البياني التلقائي ل NLP، وتمثيل الرسوم البياني تعلم النماذج القائمة على NLP، والمخططات المتقدمة GNN (على سبيل المثال، Graph2Seq و Graph2Tree و Graph2Graph) ل NLP تطبيقات GNNS في مهام NLP المختلفة (مثل الترجمة الآلية، وتوليد اللغة الطبيعية، واستخراج المعلومات والتحليل الدلالي). بالإضافة إلى ذلك، سيتم تضمين جلسات التدريب العملي للتطبيق العملي لمساعدة الجمهور على زيادة الخبرة العملية في تطبيق GNNS لحل مشاكل NLP الصعبة باستخدام مكتبة المصدر المفتوحة التي تم تطويرها مؤخرا - Graph4NLP، أول مكتبة للباحثين والممارسين لسهولة الاستخدام من GNNS مهام NLP المختلفة.
يعتبر التعلم العميق القلب النابض للذكاء الصنعي في السنوات الأخيرة، وفي ظل تراوح تطبيقاته بين السيارات ذاتية القيادة وصولًا إلى التحليلات الطبية وغير ذلك، وقدرته على حل المشاكل المعقدة متفوقًا على الإنسان في الكثير من الأحيان، بدا أننا وصلنا للحل النه ائي لمشاكل الذكاء الصنعي، لكن ظهور الهجمات الخادعة أصبح العائق الأساسي لتوظيف التطبيقات التي تعتمد على التعلم العميق كبديل للإنسان، وأصبح التطبيقات الأخيرة تحت المجهر لدراسة قدرتها على منع هذه الهجمات، نستعرض في هذا البحث تعريف الهجوم الخادع وطرقه بشكل عام، ثم نتطرق إلى تطبيقين محورين يمكن مهاجمتهما من خلاله ونعرض كيف نتصدى لهذه الهجمات، مرورًا بمقارنة النماذج الإحصائية مع الإنسان وكون الهجمات الخادعة جزءًا أساسيًا من الأنظمة التي تعتمد على المعطيات للقيام بمهامها.
يعتمد النمذجة وفهم الحوارات في محادثة على تحديد نية المستخدم من النص المحدد. كشف نية غير معروفة أو جديدة مهمة حاسمة، كما هو الحال في سيناريو واقعي قد يتغير نية المستخدم بشكل متكرر مع مرور الوقت وتحويله حتى إلى نية غير مرفدة. هذه المهمة المتمثلة في فص ل عينات النية المجهولة من النوايا المعروفة واحدة صعبة حيث يمكن أن يتراوح نية المستخدم غير المعروفة من النوايا المشابهة للحالة المحددة مسبقا لشيء مختلف تماما. غالبا ما ينظر البحث المسبق في اكتشاف النية كهمة تصنيف حيث يمكن أن ينتمي نية غير معروفة إلى مجموعة محددة مسبقا من فئات النية المعروفة. في هذه الورقة، نتعامل مع مشكلة الكشف عن نية غير معروفة تماما دون أي تلميحات مسبقة حول نوع الطبقات التي تنتمي إلى نوايا غير معروفة. نقترح طريقة فعالة لما بعد المعالجة باستخدام التحسين متعدد الأهداف لضبط مصنف نوايا NEWRET NEWRET NEWELTION موجود وجعله قادر على اكتشاف حطاء غير معروف. نحن نقوم بإجراء تجارب باستخدام مصنفات النوايا الحالية الحالية واستخدام طريقةنا على رأسها لكشف نية غير معروفة. تظهر تجاربنا عبر المجالات المختلفة ومجموعات البيانات في العالم الحقيقي أن طريقتنا تعطي تحسينات كبيرة مقارنة بالطرق الحديثة للكشف عن النية غير معروفة.
مكنت نماذج اللغة العصبية العميقة مثل بيرت التطورات الأخيرة في العديد من مهام معالجة اللغة الطبيعية. ومع ذلك، نظرا للجهد والتكلفة الحاسوبية المشاركة في التدريب المسبق لها، يتم إدخال هذه النماذج عادة فقط لعدد صغير من لغات الموارد عالية الوزن مثل اللغة الإنجليزية. في حين تتوفر نماذج متعددة اللغات التي تغطي أعدادا كبيرة من اللغات، فإن العمل الحديث يشير إلى أن التدريب أحادي الأحادي يمكن أن ينتج عن نماذج أفضل، وفهمنا للمفاضرة بين التدريب الأحادي وغير اللغوي غير مكتمل. في هذه الورقة، نقدم خط أنابيب بسيطة وأتمتة بالكامل لإنشاء نماذج بيرت الخاصة باللغة من البيانات من بيانات ويكيبيديا وإدخال 42 من هذه النماذج الجديدة، والأكثر من اللازم لغات حتى الآن تفتقر إلى نماذج اللغة العصبية العميقة المخصصة. نقوم بتقييم مزايا هذه النماذج باستخدام اختبارات Cloze و Autify Parser على بيانات التبعيات العالمية، والأداء المتناقض مع النتائج باستخدام طراز Bert (Mbert) متعدد اللغات. نجد أن نماذج WikiBert المقدمة حديثا تفوقت Mbert في اختبارات Cloze لجميع اللغات تقريبا، وأن uDify باستخدام نماذج Wikibert تفوق المحلل باستخدام Mbert في المتوسط، مع توضح الطرز الخاصة باللغة تحسين أداء محسنة بشكل كبير لبعض اللغات، ولكن تحسين محدود أو تحسين انخفاض في الأداء للآخرين. تتوفر جميع الطرق والنماذج المقدمة في هذا العمل تحت التراخيص المفتوحة من https://github.com/turkunlp/wikibert.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا