ترغب بنشر مسار تعليمي؟ اضغط هنا

التعلم العميق على الرسوم البيانية لمعالجة اللغة الطبيعية

Deep Learning on Graphs for Natural Language Processing

558   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نظرا لقوتها العظيمة في النمذجة البيانات غير الإقليدية مثل الرسوم البيانية أو الفتحات، فقد فتحت التعلم العميق على تقنيات الرسم البياني (I.E.، Graph Newerations Nearials (GNNS)) باب جديد لحل مشاكل NLP ذات الصلة بالرسوم البيانية الصعبة. لقد شهدت زيادة المصالح في تطبيق التعلم العميق على تقنيات الرسم البياني إلى NLP، وقد حققت نجاحا كبيرا في العديد من مهام NLP، بدءا من مهام التصنيف مثل تصنيف الجملة، ووضع العلامات الدلالية الدلالية واستخراج العلاقات، إلى مهام التوليد مثل الترجمة الآلية، والسؤال توليد وتلخيص. على الرغم من هذه النجاحات، لا تزال التعلم العميق على الرسوم البيانية ل NLP لا يزال العديد من التحديات، بما في ذلك تحويل بيانات تسلسل النص الأصلي تلقائيا إلى بيانات منظم بياني للغاية، والبيانات المعقدة النمذجة بشكل فعال تتضمن تعيين بين المدخلات المستندة إلى الرسم البياني وبيانات الإخراج غير المنظمة الأخرى تسلسل، الأشجار، وبيانات الرسم البياني مع أنواع متعددة في كل من العقد والحواف. سيتغطي هذا البرنامج التعليمي مواضيع ذات صلة ومثيرة للاهتمام على تطبيق التعلم العميق على تقنيات الرسم البياني إلى NLP، بما في ذلك بناء الرسم البياني التلقائي ل NLP، وتمثيل الرسوم البياني تعلم النماذج القائمة على NLP، والمخططات المتقدمة GNN (على سبيل المثال، Graph2Seq و Graph2Tree و Graph2Graph) ل NLP تطبيقات GNNS في مهام NLP المختلفة (مثل الترجمة الآلية، وتوليد اللغة الطبيعية، واستخراج المعلومات والتحليل الدلالي). بالإضافة إلى ذلك، سيتم تضمين جلسات التدريب العملي للتطبيق العملي لمساعدة الجمهور على زيادة الخبرة العملية في تطبيق GNNS لحل مشاكل NLP الصعبة باستخدام مكتبة المصدر المفتوحة التي تم تطويرها مؤخرا - Graph4NLP، أول مكتبة للباحثين والممارسين لسهولة الاستخدام من GNNS مهام NLP المختلفة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

على الرغم من كفاءتها المثبتة في المجالات الأخرى، فإن تكبير البيانات أقل شعبية في سياق معالجة اللغة الطبيعية (NLP) بسبب تعقيدها ونتائج محدودة.أظهرت دراسة حديثة (Longpre et al.، 2020) على سبيل المثال أن تعزز بيانات المهمة غير المرغوية تفشل في تعزيز أدا ء المحولات مسبقا حتى في أنظمة البيانات المنخفضة.في هذه الورقة، نحقق في ما إذا كان جدولة التكبير التي يحركها البيانات وإدماج مجموعة أوسع من التحولات يمكن أن تؤدي إلى تحسين الأداء حيث كانت السياسات الثابتة والمحدودة غير ناجحة.تشير نتائجنا إلى أنه، في حين أن هذا النهج يمكن أن يساعد عملية التدريب في بعض الإعدادات، فإن التحسينات غير صحيحة.هذه النتيجة السلبية تهدف إلى مساعدة الباحثين فهم أفضل قيود تكبير البيانات من أجل NLP.
يتم الاتفاق بشكل عام في مجتمع معالجة اللغة الطبيعية (NLP) على أنه ينبغي دمج الأخلاقيات في أي منهج.إدراك وفهم المفاهيم الأساسية ذات الصلة هو شرط أساسي فيما يتعلق بالمشاركة والمشاركة في الخطاب على NLP الأخلاقية.نقدم هنا مواد تعليمية جاهزة في شكل شرائح وتمارين عملية على القضايا الأخلاقية في NLP، والتي تهدف في المقام الأول إلى دمجها في دورات تمهيدية أو دورات اللغويات الحسابية الحسابية.من خلال جعل هذه المواد متاحة بحرية، نهدف إلى خفض العتبة لإضافة الأخلاق إلى المنهج الدراسي.نأمل أن تتيح زيادة الوعي الطلاب من تحديد السلوك غير الأخلاقي المحتمل.
نقدم مجموعة أدوات مفتوحة المصدر لمعالجة اللغة الطبيعية الدنماركية، مما يتيح سهولة الوصول إلى أحدث التطورات الدنماركية ل NLP.يتميز مجموعة الأدوات بوظائف المجمع لتحميل النماذج ومجموعات البيانات بطريقة موحدة باستخدام أطر NLP لجهة خارجية.تم تطوير مجموعة الأدوات لتعزيز بناء المجتمع وفهم الحاجة من تقاسم الصناعة والمعرفة.كمثال على ذلك، نقدم تغريدات غاضبة: لعبة توضيحي لإنشاء وعي NLP الدنماركي وخلق مجموعة بيانات جديدة مشروحة معنويات.
تم استخدام خوارزميات التعلم التلوي من الدرجة الأولى على نطاق واسع في الممارسة لتعلم معلمات النماذج الأولية التي يمكن تكييفها بسرعة مع مهام جديدة بسبب كفاءتها وفعاليتها. ومع ذلك، تجد الدراسات الحالية أن Meta-Learner يمكن أن يتألف إلى بعض التكيف المحدد عندما يكون لدينا مهام غير متجانسة، مما يؤدي إلى أدائه المتدهورة بشكل كبير. في تطبيقات معالجة اللغة الطبيعية (NLP)، غالبا ما تكون مجموعات البيانات متنوعة وكل مهمة لها خصائصها الفريدة. لذلك، لمعالجة القضية الجاكهة عند تطبيق تطبيق التعلم من الدرجة الأولى من الدرجة الأولى إلى تطبيقات NLP، نقترح تخفيض تباين مقدر التدرج المستخدم في تكيف المهام. تحقيقا لهذه الغاية، نقوم بتطوير خوارزمية للتعلم من الدرجة الأولى من الدرجة الأولى من الدرجة الأولى. جوهر خوارزميةنا هو إدخال مصطلح تقليل متباين رواية لتقدير التدرج عند إجراء تكيف المهمة. تجارب على تطبيقين NLP: يظهر تتبع عدد قليل من التصنيف النصي وتتبع حالة الحوار متعدد المجالات الأداء الفائق لطرأنا المقترحة.
أصبحت الشبكات العصبية العميقة ونماذج اللغة الضخمة في كل شيء في تطبيقات اللغة الطبيعية. نظرا لأنهم معروفون بطلب كميات كبيرة من بيانات التدريب، فهناك مجموعة متنامية من العمل لتحسين الأداء في إعدادات الموارد المنخفضة. بدافع من التغييرات الأساسية الأخيرة نحو النماذج العصبية والطائرة المسبقة والتدريب الشائعة النغمات الجميلة، نقوم بمسح نهج واعدة لمعالجة اللغات الطبيعية المنخفضة الموارد. بعد مناقشة حول الأبعاد المختلفة لتوفر البيانات، نقدم نظرة عامة منظم على الطرق التي تمكن التعلم عند انتشار البيانات التدريبية. يشتمل ذلك على آليات لإنشاء بيانات إضافية مصممة مثل تكبير البيانات والإشراف البعيد بالإضافة إلى إعدادات التعلم التي تقلل من الحاجة إلى الإشراف المستهدف. الهدف من المسح لدينا هو شرح كيف تختلف هذه الطرق في متطلباتهم كضمين لهم ضروري لاختيار تقنية مناسبة لإعداد محدد من الموارد منخفضة. هناك جوانب رئيسية أخرى لهذا العمل هي تسليط الضوء على القضايا المفتوحة وإطلاع الإرشادات الواعدة للبحث في المستقبل.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا