يعتمد النمذجة وفهم الحوارات في محادثة على تحديد نية المستخدم من النص المحدد. كشف نية غير معروفة أو جديدة مهمة حاسمة، كما هو الحال في سيناريو واقعي قد يتغير نية المستخدم بشكل متكرر مع مرور الوقت وتحويله حتى إلى نية غير مرفدة. هذه المهمة المتمثلة في فصل عينات النية المجهولة من النوايا المعروفة واحدة صعبة حيث يمكن أن يتراوح نية المستخدم غير المعروفة من النوايا المشابهة للحالة المحددة مسبقا لشيء مختلف تماما. غالبا ما ينظر البحث المسبق في اكتشاف النية كهمة تصنيف حيث يمكن أن ينتمي نية غير معروفة إلى مجموعة محددة مسبقا من فئات النية المعروفة. في هذه الورقة، نتعامل مع مشكلة الكشف عن نية غير معروفة تماما دون أي تلميحات مسبقة حول نوع الطبقات التي تنتمي إلى نوايا غير معروفة. نقترح طريقة فعالة لما بعد المعالجة باستخدام التحسين متعدد الأهداف لضبط مصنف نوايا NEWRET NEWRET NEWELTION موجود وجعله قادر على اكتشاف حطاء غير معروف. نحن نقوم بإجراء تجارب باستخدام مصنفات النوايا الحالية الحالية واستخدام طريقةنا على رأسها لكشف نية غير معروفة. تظهر تجاربنا عبر المجالات المختلفة ومجموعات البيانات في العالم الحقيقي أن طريقتنا تعطي تحسينات كبيرة مقارنة بالطرق الحديثة للكشف عن النية غير معروفة.
Modelling and understanding dialogues in a conversation depends on identifying the user intent from the given text. Unknown or new intent detection is a critical task, as in a realistic scenario a user intent may frequently change over time and divert even to an intent previously not encountered. This task of separating the unknown intent samples from known intents one is challenging as the unknown user intent can range from intents similar to the predefined intents to something completely different. Prior research on intent discovery often consider it as a classification task where an unknown intent can belong to a predefined set of known intent classes. In this paper we tackle the problem of detecting a completely unknown intent without any prior hints about the kind of classes belonging to unknown intents. We propose an effective post-processing method using multi-objective optimization to tune an existing neural network based intent classifier and make it capable of detecting unknown intents. We perform experiments using existing state-of-the-art intent classifiers and use our method on top of them for unknown intent detection. Our experiments across different domains and real-world datasets show that our method yields significant improvements compared with the state-of-the-art methods for unknown intent detection.
المراجع المستخدمة
https://aclanthology.org/
يحدد اكتشاف الموقف ما إذا كان مؤلف النص مؤهلا لصالح أو محايد هدف معين ويوفر رؤى قيمة في أحداث مهمة مثل تقنين الإجهاض. على الرغم من التقدم الكبير في هذه المهمة، فإن أحد التحديات المتبقية هو ندرة التعليقات التوضيحية. علاوة على ذلك، ركزت معظم الأعمال ال
ألقى النمو الأسي للإنترنت والوسائط الاجتماعية في العقد الماضي الطريق إلى زيادة نشر المعلومات الخاطئة أو المضللة. منذ الانتخابات الرئاسية الأمريكية لعام 2016، أصبحت مصطلح أخبار وهمية "أصبحت شعبية متزايدة وقد تلقت هذه الظاهرة اهتماما أكبر. في السنوات ا
تعتبر مسألة إيجاد الحل الأمثل لمسألة الارتباط الجزيئي بين المركبات من المسائل
الصعبة. عند حل المسألة باستخدام الخوارزميات التي تتبع النهج الوحيد الهدف تكون
النتائج متغيرة و معقدة. لا يمكن العثور إلاّ على عدد قليل من الأوراق البحثية التي تتناول
هذه
نظرا لقوتها العظيمة في النمذجة البيانات غير الإقليدية مثل الرسوم البيانية أو الفتحات، فقد فتحت التعلم العميق على تقنيات الرسم البياني (I.E.، Graph Newerations Nearials (GNNS)) باب جديد لحل مشاكل NLP ذات الصلة بالرسوم البيانية الصعبة. لقد شهدت زيادة ا
يعتبر التعلم العميق القلب النابض للذكاء الصنعي في السنوات الأخيرة، وفي ظل تراوح تطبيقاته بين السيارات ذاتية القيادة وصولًا إلى التحليلات الطبية وغير ذلك، وقدرته على حل المشاكل المعقدة متفوقًا على الإنسان في الكثير من الأحيان، بدا أننا وصلنا للحل النه