ترغب بنشر مسار تعليمي؟ اضغط هنا

نحن نعتبر التمثيل الهرمي للوثائق كرسوم بيانية واستخدام التعلم العميق الهندسي لتصنيفها إلى فئات مختلفة.في حين أن الشبكات العصبية الرسم البيانية يمكن أن تتعامل مع الهيكل المتغير بشكل فعال للمستندات التسلسل الهرمية باستخدام عمليات تمرير رسالة ثابتة للصب غ، فإننا نوضح أنه يمكننا الحصول على تحسينات إضافية على الأداء باستخدام عملية تجمع الرسوم البيانية الانتقائية المقترحة التي تنشأ من حقيقة أن بعض أجزاء التسلسل الهرمي ثابتةعبر وثائق مختلفة.طبقنا نموذجنا لتصنيف بروتوكولات التجريبية السريري (CT) إلى فئات كاملة وإنهاءها.نستخدم حقيبة من الكلمات القائمة على الأكياس، بالإضافة إلى تضيير مقرها المحولات مسبقا لفصل العقد الرسم البياني، وتحقيق F1 Squareesaround 0.85 على سجل CT واسع النطاق للجمهور حول بروتوكولات 360k.نوضح كذلك كيف يمكن للتجمع الانتقائي إضافة رؤى في التنبؤ بحالة إنهاء CT.نحن نجعل التعليمات البرمجية المصدرية والشقاقات DataSet يمكن الوصول إليها.
يعتمد النمذجة وفهم الحوارات في محادثة على تحديد نية المستخدم من النص المحدد. كشف نية غير معروفة أو جديدة مهمة حاسمة، كما هو الحال في سيناريو واقعي قد يتغير نية المستخدم بشكل متكرر مع مرور الوقت وتحويله حتى إلى نية غير مرفدة. هذه المهمة المتمثلة في فص ل عينات النية المجهولة من النوايا المعروفة واحدة صعبة حيث يمكن أن يتراوح نية المستخدم غير المعروفة من النوايا المشابهة للحالة المحددة مسبقا لشيء مختلف تماما. غالبا ما ينظر البحث المسبق في اكتشاف النية كهمة تصنيف حيث يمكن أن ينتمي نية غير معروفة إلى مجموعة محددة مسبقا من فئات النية المعروفة. في هذه الورقة، نتعامل مع مشكلة الكشف عن نية غير معروفة تماما دون أي تلميحات مسبقة حول نوع الطبقات التي تنتمي إلى نوايا غير معروفة. نقترح طريقة فعالة لما بعد المعالجة باستخدام التحسين متعدد الأهداف لضبط مصنف نوايا NEWRET NEWRET NEWELTION موجود وجعله قادر على اكتشاف حطاء غير معروف. نحن نقوم بإجراء تجارب باستخدام مصنفات النوايا الحالية الحالية واستخدام طريقةنا على رأسها لكشف نية غير معروفة. تظهر تجاربنا عبر المجالات المختلفة ومجموعات البيانات في العالم الحقيقي أن طريقتنا تعطي تحسينات كبيرة مقارنة بالطرق الحديثة للكشف عن النية غير معروفة.
يعد تطبيع المفهوم للنصوص السريرية للتصنيفات الطبية القياسية والاتجاهات مهمة ذات أهمية عالية للبحث الطبي للرعاية الصحية. نحاول حل هذه المشكلة من خلال ترميز CT التلقائي CT، حيث يعد CT Snomed CT أحد أونولوجيات المصطلحات السريرية الأكثر استخداما وشاملة ع لى نطاق واسع. ومع ذلك، فإن تطبيق نماذج التعلم العميق الأساسية يؤدي إلى نتائج غير مرغوب فيها بسبب الطبيعة غير المتوازنة للبيانات والعدد المتطرف من الفصول الدراسية. نقترح إجراء التصنيف الذي يحتوي على سير عمل متعدد الخطوات يتكون من تجميع الملصقات، والتصنيف متعدد الكتلة، ورسم الخرائط عن المجموعات إلى الملصقات. بالنسبة للتصنيف متعدد المجموعات، BioBert يتم ضبطه بشكل جيد على مجموعة بياناتنا المخصصة. يتم إجراء تعيين مجموعات إلى التسميات من قبل A One-VS-All Mederifier (SVC) المطبق على كل كتلة واحدة. نقدم أيضا خطوات لتوليد البيانات التلقائي من الأوصاف النصية المشروحة مع رموز CT Conomed بناء على البيانات العامة والبيانات المفتوحة المرتبطة. من أجل التعامل مع المشكلة أن DataSet لدينا غير متوازنة للغاية، يتم تطبيق بعض طرق تكبير البيانات. تظهر النتائج من التجارب التي أجريت دقة عالية وموثوقية نهجنا للتنبؤ برموز CT Conomed ذات الصلة بنص سريري.
إن مهمة التشخيص التلقائي تشفيرها في التصنيفات الطبية القياسية والاتحاد، لها أهمية كبيرة في الطب - كلاهما لدعم المهام اليومية للأطباء في إعداد الوثائق السريرية والإبلاغ عن التقارير السريرية. في هذه الورقة، نحقق في تطبيق وأداء محولات التعلم العميق المخ تلفة للترميز التلقائي في ICD-10 من النصوص السريرية في البلغارية. يحاول التحليل المقارن العثور على النهج الذي هو أكثر كفاءة لاستخدامه في ضبط محول الأسرة برت المحدود إلى التعامل مع مصطلحات مجال معين على لغة نادرة مثل البلغارية. على جانب واحد، تستخدم سلافيكبرت و Multirigualbert، والتي يتم الاحترام من أجل المفردات الشائعة في البلغارية، ولكن تفتقر إلى المصطلحات الطبية. من ناحية أخرى، يتم استخدام BioBert، Clinicalbert، Sapbert، Bluebert، والتي يتم الاحتراج بها للمصطلحات الطبية باللغة الإنجليزية، ولكنها تفتقر إلى التدريب لنماذج اللغة باللغة البلغارية، وأكثر من اللازم للمفردات في السيريلية. في دراسة الأبحاث الخاصة بنا، يتم ضبط جميع نماذج Bert بشكل جيد مع نصوص طبية إضافية في البلغارية ثم تطبق على مهمة التصنيف لترميز التشخيصات الطبية في البلغارية في رموز ICD-10. يستخدم Big Corpora للتشخيص في البلغاري المشروح مع رموز ICD-10 لمهمة التصنيف. يمنح مثل هذا التحليل فكرة جيدة عن النماذج مناسبة لمهام نوع مماثل ومجال. تظهر نتائج التجارب والتقييم أن كلا النهجتين لها دقة مماثلة.
تنطوي تنبؤ التعقيد المعجمي (LCP) على تعيين درجة صعوبة إلى كلمة أو تعبير معين، في نص مخصص للجمهور المستهدف.في هذه الورقة، نقدم نظام جديد يعتمد على التعلم العميق لهذه المهمة الصعبة.يتكون النظام المقترح من نموذج تعليمي عميق، استنادا إلى تشفير المحولات ا لمدربة مسبقا، من أجل تنبؤ تعقيد Word و Expression متعدد الكلمة (MWE).أولا، في الجزء العلوي من تضمين الكلمة السياقية في التشفير، توظف نموذجنا طبقة اهتماما في سياق الإدخال والكلمة المعقدة أو MWE.بعد ذلك، يتسلل إخراج الانتباه مع الإخراج المجمع من التشفير وتمتاز إلى وحدة الانحدار.نحن نحقق في كل من المهمة الفردية والتدريب المشترك على كلا بيانات المهام الفرعية باستخدام الترميز المتعدد المدربين مسبقا.النتائج التي تم الحصول عليها واعدة للغاية وتعرض فعالية المحولات التي تم تدريبها مسبقا على مهام LCP.
يمكن أن تكون أنظمة NLP المستندة إلى التعلم العميق حساسة للرموز غير المرئية ويصعب التعلم مع المدخلات عالية الأبعاد التي تعيق التعلم بشكل خطير.نقدم نهجا من خلال تجميع كلمات الإدخال على أساس التنوع الدلالي الخاص بهم لتبسيط تمثيل لغة الإدخال مع غموض منخف ض.نظرا لأن الكلمات المتنوعة الدلوية موجودة في سياقات مختلفة، فإننا قادرون على استبدال الكلمات مع مجموعاتهم وما زالت تميز معاني الكلمة التي تعتمد على سياقاتها.نقوم بتصميم العديد من الخوارزميات التي تحسب تجمعات متنوعة تستند إلى أخذ العينات العشوائية، مسافات هندسية، وتعظيم انتروبيا، ونثبت ضمانات رسمية للخوارزميات القائمة على الانتروبوي.تظهر النتائج التجريبية أن أساليبنا تعمم طرازات NLP وإظهار الدقة المعززة على وضع علامات نقاط البيع ومهام LM وتحسينات كبيرة على مهام الترجمة الآلية المتوسطة الحجم، ما يصل إلى +6.5 نقطة بلو.يتوفر شفرة المصدر لدينا في https://github.com/abdulrafae/dg.
أسماء ومعرفات المراقبة المنطقية (LOINC) هي مجموعة قياسية من الرموز التي تمكن الأطباء من التواصل حول الاختبارات الطبية.تعتمد المختبرات على Loinc لتحديد ما تختبر طلبات الطبيب للمريض.ومع ذلك، غالبا ما يستخدم الأطباء رموز مخصصة خاصة بالموقع في أنظمة السج لات الطبية التي يمكن أن تشمل اختلافا بالاختصار والأخطاء الإملائية واخترع المختصرات.يجب أن يتم تعيين حلول البرمجيات من هذه الرموز المخصصة إلى معيار Loinc لدعم قابلية التشغيل البيني للبيانات.التحدي الرئيسي هو أن لوينك تتألف من ستة عناصر.التعيين لا يتطلب عدم استخراج هذه العناصر فحسب، بل يجمع بينها أيضا وفقا لمنطق Loinc.وجدنا أن التعلم العميق القائم على الطابع يتفوق عند استخراج عناصر Loinc بينما تكون الأساليب القائمة على المنطق أكثر فعالية للجمع بين هذه العناصر في قيم Loinc كاملة.في هذه الورقة، نقدم مجموعة من التعلم والمنطق والمنطق المستخدم حاليا في العديد من المرافق الطبية في الخريطة من
نماذج تلخيص التعلم العميق الأخيرة (DL) تتفوق بشكل كبير من منهجيات التلخصات التقليدية، وتوليد ملخصات عالية الجودة. على الرغم من نجاحهم، لا تزال هناك مشكلات مفتوحة مهمة، مثل المشاركة المحدودة والثقة للمستخدمين في العملية برمتها. من أجل التغلب على هذه ا لقضايا، نعيد النظر في مهمة التلخيص من منظور متمركز الإنسان. نقترح دمج واجهة المستخدم بنموذج DL الأساسي، بدلا من معالجة التلخيص كامرأة معزولة من المستخدم النهائي. نقدم نظام جديد، حيث يمكن للمستخدم المشاركة بنشاط في عملية التلخيص بأكملها. كما يمكننا المستخدم من جمع الأفكار في العوامل المسببة التي تدفع سلوك النموذج، واستغلال آلية اهتمام الذات. نحن نركز على المجال المالي، من أجل إظهار كفاءة نماذج DL العامة للتطبيقات الخاصة بالمجال. يتخذ عملنا خطوة أولى نحو نهج تصميم مشترك للواجهة النموذجية، حيث تتطور نماذج DL على طول احتياجات المستخدمين، مما يمهد الطريق نحو واجهات تلخيص نص الحاسوب البشري.
بناء نظام ذكي يقوم بالتعرف على الأصناف الموجودة في صورة وتوليد توصيف نصي لهذه الأغراض الموجودة في الصورة. استخدمنا الشبكات العصبونية الملتفة Convolutional Neural Networks للقيام بعملية استخلاص الأصناف الموجودة في الصورة، وأدخلنا هذه الأصناف إلى شبكة عصبونية تكرارية Recurrent Neural Network للقيام بعملية توليد التوصيف النصي.
يهدف التنقيب في النصوص بشكل عام إلى تحليل النصوص لاستخلاص معارف ذات جودة عالية من عدة مصادر نصية، والربط فيما بينها لتشكيل حقائق وفرضيات جديدة. تعد الأوراق البحثية التمثيل الأكثر اكتمالاً للمعرفة البشرية. وقد ساهمت حركة "الوصول المفتوح" إلى الأوراق ا لبحثية، بالإضافة إلى ازدهار حقل التعلم الآلي في الآونة الأخيرة وتوفر الأدوات البرمجية والعتادية بكلف منخفضة نسبياً، بتداعي الحواجز المعيقة لعملية التنقيب في نصوص الأوراق البحثية. في تتمة هذه الدراسة سنستعرض مجموعة من أساليب التنقيب في النصوص العلمية من حيث أهميتها، مجالات استخدامها، وطرق تطبيقها.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا