تؤدي نماذج اللغة المدربة مسبقا بشكل جيد في مجموعة متنوعة من المهام اللغوية التي تتطلب منطق رمزي، مما رفع مسألة ما إذا كانت هذه النماذج تمثل ضمنيا الرموز والقواعد المجردة. نحن نحقق في هذا السؤال باستخدام دراسة حالة أداء بيرت على اتفاقية الفعل الإنجليزي - الفعل. على عكس العمل السابق، ندرب حالات متعددة من بيرت من نقطة الصفر، مما يسمح لنا بإجراء سلسلة من التدخلات التي تسيطر عليها وقت ما قبل التدريب. نظرا لأن بيرت تعميم غالبا جيدا حتى تخضع أزواج الفعل التي لم تحدث أبدا في التدريب، مما يشير إلى درجة من السلوك الذي تحكم القواعد. ومع ذلك، نجد أيضا أن هذا الأداء يتأثر بشدة بتردد الكلمات، مع وجود تجارب تظهر أن كل من التردد المطلق لنموذج الفعل، وكذلك التردد بالنسبة إلى الانعطاف البديل، يتم تورطه سببابيا في تنبؤات Bert في وقت الاستدلال وبعد يكشف التحليل الأقرب من تأثيرات التردد هذه أن سلوك بيرت يتوافق مع النظام الذي يطبق بشكل صحيح قاعدة SVA بشكل عام ولكنه يكافح من أجل التغلب على بظر تدريب قوي وتقدير ميزات الاتفاقية (المفرد مقابل الجمع) على البنود المعجمية النادرة.
Pre-trained language models perform well on a variety of linguistic tasks that require symbolic reasoning, raising the question of whether such models implicitly represent abstract symbols and rules. We investigate this question using the case study of BERT's performance on English subject--verb agreement. Unlike prior work, we train multiple instances of BERT from scratch, allowing us to perform a series of controlled interventions at pre-training time. We show that BERT often generalizes well to subject--verb pairs that never occurred in training, suggesting a degree of rule-governed behavior. We also find, however, that performance is heavily influenced by word frequency, with experiments showing that both the absolute frequency of a verb form, as well as the frequency relative to the alternate inflection, are causally implicated in the predictions BERT makes at inference time. Closer analysis of these frequency effects reveals that BERT's behavior is consistent with a system that correctly applies the SVA rule in general but struggles to overcome strong training priors and to estimate agreement features (singular vs. plural) on infrequent lexical items.
المراجع المستخدمة
https://aclanthology.org/
القواعد قوانين مستنبطة من كلام العرب الذين لم تفسد سلائقهم، و الشاهد يمثل روح القاعدة، إذ يضفي عليها الحياة و المتعة و الأصالة، و الكلام العربي الذي يستشهد به هو القرآن الكريم و الحديث النبوي الشريف و ما أُثر من كلام العرب شعراً و نثراً منذ الجاهلية
يقوم هذا البحث على دراسة العلاقة بين القياس و القاعدة النحوية؛ إذ يعد القياس أحد أصول النحو العربي و أركانه في مرحلة التقعيد و بناء الأحكام، و قد انقسم العلماء فيه بين مؤيد و رافض، و كان النحاة أكثر ميلاً إلى القياس من الرواة؛ لأن بحوثهم تقوم على الت
مجردة أن هذه الدراسة تنفذ تقييم جوهري منهجي للتمثيل الدلالي الذي تعلمته المحولات متعددة الوسائط المدربة مسبقا. يزعم هذه التمثيلات أنها غير ملائمة للمهمة وأظهرت للمساعدة في العديد من مهام اللغة والرؤية المصب. ومع ذلك، فإن المدى الذي يتماشى فيه مع الحد
نماذج المحولات باهظة الثمن لحن النغمة، والبطيئة للتناسم، ولديها متطلبات تخزين كبيرة.تتناول النهج الحديثة هذه أوجه القصور عن طريق تدريب النماذج الأصغر، مما يقلل ديناميكيا حجم النموذج، وتدريب محولات الوزن الخفيف.في هذه الورقة، نقترح Adapterdrop، وإزالة
أدت التقدم المحرز الأخير في معالجة اللغات الطبيعية إلى أن تصبح هياكل المحولات النموذجية السائدة المستخدمة لمهام اللغة الطبيعية.ومع ذلك، في العديد من مجموعات البيانات في العالم، يتم تضمين طرائق إضافية التي لا يستوفي المحول مباشرة.نقدم مجموعة أدوات متع