نماذج المحولات باهظة الثمن لحن النغمة، والبطيئة للتناسم، ولديها متطلبات تخزين كبيرة.تتناول النهج الحديثة هذه أوجه القصور عن طريق تدريب النماذج الأصغر، مما يقلل ديناميكيا حجم النموذج، وتدريب محولات الوزن الخفيف.في هذه الورقة، نقترح Adapterdrop، وإزالة محولات من طبقات محول أقل أثناء التدريب والاستدلال، مما يشتمل على المفاهيم من الاتجاهات الثلاثة.نظهر أن Adapterdrop يمكن أن تقلل ديناميكيا من العلامة الحسابية الحسابية عند إجراء الاستدلال على مهام متعددة في وقت واحد، مع انخفاض الحد الأدنى في عروض العمل.سنقوم بمزيد من المحولات من Adaperfusion، مما يحسن كفاءة الاستدلال مع الحفاظ على أداء العمل بالكامل.
Transformer models are expensive to fine-tune, slow for inference, and have large storage requirements. Recent approaches tackle these shortcomings by training smaller models, dynamically reducing the model size, and by training light-weight adapters. In this paper, we propose AdapterDrop, removing adapters from lower transformer layers during training and inference, which incorporates concepts from all three directions. We show that AdapterDrop can dynamically reduce the computational overhead when performing inference over multiple tasks simultaneously, with minimal decrease in task performances. We further prune adapters from AdapterFusion, which improves the inference efficiency while maintaining the task performances entirely.
المراجع المستخدمة
https://aclanthology.org/
أصبح تحسين كفاءة المحولات جذابة بشكل متزايد مؤخرا.تم اقتراح مجموعة واسعة من الطرق، على سبيل المثال، التشذيب، الكمي، البنيات الجديدة وغيرها. ولكن هذه الأساليب إما متطورة في التنفيذ أو التعتمد على الأجهزة.في هذه الورقة، نظير على أنه يمكن تحسين كفاءة ال
تؤدي نماذج اللغة المدربة مسبقا بشكل جيد في مجموعة متنوعة من المهام اللغوية التي تتطلب منطق رمزي، مما رفع مسألة ما إذا كانت هذه النماذج تمثل ضمنيا الرموز والقواعد المجردة. نحن نحقق في هذا السؤال باستخدام دراسة حالة أداء بيرت على اتفاقية الفعل الإنجليز
أدت التقدم المحرز الأخير في معالجة اللغات الطبيعية إلى أن تصبح هياكل المحولات النموذجية السائدة المستخدمة لمهام اللغة الطبيعية.ومع ذلك، في العديد من مجموعات البيانات في العالم، يتم تضمين طرائق إضافية التي لا يستوفي المحول مباشرة.نقدم مجموعة أدوات متع
بالنسبة للعديد من المهام، تم تحقيق النتائج الحديثة مع الهندسة المعمارية القائمة على المحولات، مما يؤدي إلى تحول نموذجي في الممارسات من استخدام الهيغات الخاصة بمهام المهام إلى ضبط نماذج اللغة المدربة مسبقا مسبقا. يتكون الاتجاه المستمر في نماذج تدريبية
تتيح المعالجة الإضافية أنظمة تفاعلية تستجيب بناء على المدخلات الجزئية، وهي خاصية مرغوبة على سبيل المثال في عوامل الحوار. تقوم بنية المحولات الشعبية حاليا بطبيعتها بمعالجة التسلسلات ككل، تجرد فكرة الوقت. محاولات العمل الحديثة لتطبيق المحولات بشكل تدري