نعرف أهم المفاهيم و نذكر بأهم المبرهنات المتعلقة بالبحث، ثم نثبت المبرهنة
الأساسية لوجود تطبيق هولومورفي إسقاطي غير مبتذل بين فضاءات كيلير
المكافئية.
أخيرا نحدد فضاءات كيلير المكافئية التي تبلغ أقصى درجة حرية بالنسبة
للتطبيقات الهولومورفية الإسقاطية.
In this paper defined important expressions, a
remembered important theorem which we need , approved
essential theorem to be exist non trivial Holomorphically
projective mapping between Kahlerian spaces.
Finally we specified Kahlerian spaces which have
maximum degree of variance parabolically – Kahlerian
spaces.
المراجع المستخدمة
Eisenhart L.P. Riemannian geometry. Princeton Univ. Press. 1926
Eisenhart L.P. Non-Riemannian geometry. Princeton Univ. Press. 1926. AMS Colloq. Publ. 8, 2000
Eisenhart L.P. Continuous groups of transformations. Princeton Univ. Press, 1933
ندرس في هذا البحث التطبيقات التوافقية بين نوع خاص من
فضاءات كيلير (الفضاءات التبادلية) و نثبت أنه إذا وجد تطبيق
توافقي بين فضاءات كيلير التبادلية فإن التطبيق يكون تحاكياً.
نذكر بأهم المفاهيم و المبرهنات المتعلقة بالبحث, و من ثم
نحاول تحديد شروط وجود التحويل المطابق و التحويل الإسقاطي في
فضاءات كيلير السوية و تحديد عدد وسطاء الحركة في هذه التحويلات.
نذكر بأهم المفاهيم و المبرهنات المتعلقة بالبحث, و من ثم
نحدد شروط وجود التحويل التوافقي في فضاءات كيلير المكافئية السوية
و نحدد عدد وسطاء الحركة في هذه التحويلات.
نعرّف فضاء ساساكي المكافئي و نجد الشرط اللازم و الكافي لوجود تطبيق جيوديزي
بين فضائي ساساكي، ثمّ نثبت أن الشرط اللازم و الكافي لوجود تطبيق جيوديزي بين
فضائي ساساكي ذو البنية الواحدة هو أن يكونا متقايسين.
ثمّ نصل إلى نتيجة أنه إذا وجد تطبيق جيوديزي
الهدف من هذا البحث هو دراسة المودولات الإسقاطية المحلية و الأفقية المحلية. بشكل خاص، تعد
هذه الورقة متابعة لدراسة المودولات الإسقاطية و الأفقية المحلية للحصول على وصف جديد لهذه
المودولات.